References
[1]. Abd-Elazim, S. M. & Ali, E. S. (2016). Load frequency
controller design of a two-area system composing of PV
grid and thermal generator via firefly algorithm. Neural
Computing and Applications, 1-10.
[2]. Ali, E. S. & Abd-Elazim, S. M. (2011). Bacteria Foraging
Optimization algorithm based load frequency controller for
interconnected power system. International Journal of
Electrical Power & Energy Systems, 33(3), 633-638.
[3]. Alomoush, M. I. (2010). Load frequency control and
automatic generation control using fractional-order
controllers. Electrical Engineering (Archiv fur
Elektrotechnik), 91(7), 357-368.
[4]. Atashpaz-Gargari, E. & Lucas, C. (2007, September).
Imperialist competitive algorithm: an algorithm for
optimization inspired by imperialistic competition. In
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on (pp. 4661-4667). IEEE.
[5]. Cai, J., Ma, X., Li, L., Yang, Y., Peng, H., & Wang, X.
(2007). Chaotic ant swarm optimization to economic
dispatch. Electric Power Systems Research, 77(10), 1373-
1380.
[6]. Çam, E. & Kocaarslan, I. (2005). Load frequency
control in two area power systems using fuzzy logic
controller. Energy Conversion and Management, 46(2),
233-243.
[7]. Dash, P., Saikia, L. C., & Sinha, N. (2016). Flower
pollination algorithm optimized PI-PD cascade controller in
automatic generation control of a multi-area power
system. International Journal of Electrical Power & Energy
Systems, 82, 19-28.
[8]. Demiroren, A. & Yesil, E. (2004). Automatic generation
control with fuzzy logic controllers in the power system
including SMES units. International Journal of Electrical
Power & Energy Systems, 26(4), 291-305.
[9]. Dong, L., Zhang, Y., & Gao, Z. (2012). A robust
d e c e n t r a l i z e d l o a d f r e q u e n c y c o n t r o l l e r f o r
interconnected power systems. ISA Transactions, 51(3),
410-419.
[10]. Ghoshal, S. P. (2004). Optimizations of PID gains by
particle swarm optimizations in fuzzy based automatic
generation control. Electric Power Systems Research,
72(3), 203-212.
[11]. Goldberg, D. E. (1989). Genetic Algorithms in Search
Optimization and Machine Learning. Addison-Wesley.
[12]. Golpira, H. & Bevrani, H. (2011). Application of GA
optimization for automatic generation control design in an
interconnected power system. Energy Conversion and
Management, 52(5), 2247-2255.
[13]. Goyal, R. & Yadav, G. (2016). Load Frequency Control
in three areas System by using Fuzzy Logic Controller and
Fuel Cell. International Research Journal of Engineering
and Technology (IRJET), 3(9), 567-570.
[14]. Guha, D., Roy, P. K., & Banerjee, S. (2016). Load
frequency control of interconnected power system using
grey wolf optimization. Swarm and Evolutionary
Computation, 27, 97-115.
[15]. Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Santhi, V., Ashour, A. S. et al. (2017). Application of flower
pollination algorithm in load frequency control of multiarea
interconnected power system with nonlinearity.
Neural Computing and Applications, 28(1), 475-488.
[16]. Juang, C. F., & Lu, C. F. (2005). Power system load
frequency control by genetic fuzzy gain scheduling
controller. Journal of the Chinese Institute of Engineers,
28(6), 1013-1018.
[17]. Khezri, R., Golshannavaz, S., Shokoohi, S., & Bevrani,
H. (2016). Fuzzy Logic based Fine-tuning Approach for
Robust Load Frequency Control in a Multi-area Power
System. Electric Power Components and Systems, 44(18),
2073-2083.
[18]. Khodabakhshian, A. & Hooshmand, R. (2010). A new
PID controller design for automatic generation control of
hydro power systems. International Journal of Electrical
Power & Energy Systems, 32(5), 375-382.
[19]. Khuntia, S. R. & Panda, S. (2012). Simulation study for
automatic generation control of a multi-area power
system by ANFIS approach. Applied Soft Computing, 12(1),
333-341.
[20]. Kundur, P., Balu, N. J., & Lauby, M. G. (1994). Power
System Stability and Control (Vol. 7). New York: McGraw-hill.
[21]. Mathur, H. D. & Manjunath, H. V. (2007). Frequency
stabilization using fuzzy logic based controller for multi-area
power system. The South Pacific Journal of Natural and
Applied Sciences, 25(1), 22-29.
[22]. Mohanty, B., Panda, S., & Hota, P. K. (2014). Differential
evolution algorithm based automatic generation control
for interconnected power systems with non-linearity.
Alexandria Engineering Journal, 53(3), 537-552.
[23]. Nikmanesh, E., Hariri, O., Shams, H., & Fasihozaman,
M. (2016). Pareto design of load frequency control for
interconnected power systems based on Multi-objective
Uniform Diversity Genetic Algorithm. International Journal
of Electrical Power & Energy Systems, 80, 333-346.
[24]. Padhan, D. G. & Majhi, S. (2013). A new control
scheme for PID load frequency controller of single-area
and multi-area power systems. ISA Transactions, 52(2), 242-
251.
[25]. Padhan, S., Sahu, R. K., & Panda, S. (2014). Application of firefly algorithm for load frequency control of
multi-area interconnected power system. Electric Power
Components and Systems, 42(13), 1419-1430.
[26]. Parmar, K. S., Majhi, S., & Kothari, D. P. (2010,
December). Multi-area load frequency control in a power
system using optimal output feedback method. In Power
Electronics, Drives and Energy Systems (PEDES) & 2010
Power India, 2010 Joint International Conference on (pp.
1-5). IEEE.
[27]. Prasanth, B. V. & Kumar, S. J. (2008). Load frequency
control for a two area interconnected power system using
robust genetic algorithm controller. Journal of Theoretical
and Applied Information Technology, 4(12), 1204-1212.
[28]. Rahman, A., Saikia, L. C., & Sinha, N. (2016). Maiden
application of hybrid pattern search-biogeography based
optimisation technique in automatic generation control of
a multi-area system incorporating interline power flow
controller. IET Generation, Transmission, & Distribution,
10(7), 1654-1662.
[29]. Raju, M., Saikia, L. C., & Sinha, N. (2016). Automatic
generation control of a multi-area system using ant lion
optimizer algorithm based PID plus second order derivative
controller. International Journal of Electrical Power &
Energy Systems, 80, 52-63.
[30]. Rout, U. K., Sahu, R. K., & Panda, S. (2013). Design and
analysis of differential evolution algorithm based
automatic generation control for interconnected power
system. Ain Shams Engineering Journal, 4(3), 409-421.
[31]. Roy, R., Bhatt, P., & Ghoshal, S. P. (2010). Evolutionary
computation based three-area automatic generation
control. Expert Systems with Applications, 37(8), 5913-
5924.
[32]. Saadat, H. (1999). Power System Analysis. McGraw-
Hill.
[33]. Sahu, R. K., Panda, S., & Padhan, S. (2014). Optimal
gravitational search algorithm for automatic generation
control of interconnected power systems. Ain Shams
Engineering Journal, 5(3), 721-733.
[34]. Sahu, R. K., Panda, S., Biswal, A., & Sekhar, G. C.
(2016). Design and analysis of tilt integral derivative
controller with filter for load frequency control of multi-area interconnected power systems. ISA Transactions, 61, 251-
264.
[35]. Saikia, L. C., Nanda, J., & Mishra, S. (2011).
Performance comparison of several classical controllers in
AGC for multi-area interconnected thermal system.
International Journal of Electrical Power & Energy Systems,
33(3), 394-401.
[36]. Sambariya, D. K. & Nath, V. (2016). Load frequency
control using fuzzy logic based controller for multi-area
power system. British Journal of Mathematics & Computer
Science, 13(5), 1-19.
[37]. Saxena, S. & Hote, Y. V. (2016). Decentralized PID load
frequency control for perturbed multi-area power systems.
International Journal of Electrical Power & Energy Systems,
81, 405-415.
[38]. Shabani, H., Vahidi, B., & Ebrahimpour, M. (2013). A
robust PID controller based on imperialist competitive
algorithm for load-frequency control of power systems. ISA
Transactions, 52(1), 88-95.
[39]. Shankar, G. & Mukherjee, V. (2016). Quasi
oppositional harmony search algorithm based controller
tuning for load frequency control of multi-source multi-area
power system. International Journal of Electrical Power &
Energy Systems, 75, 289-302.
[40]. Sharifi, A., Sabahi, K., Shoorehdeli, M. A., Nekoui, M.
A., & Teshnehlab, M. (2008, June). Load frequency control
in interconnected power system using multi-objective PID
controller. In Soft Computing in Industrial Applications,
2008. SMCia'08. IEEE Conference on (pp. 217-221). IEEE.
[41]. Shayeghi, H., Jalili, A., & Shayanfar, H. A. (2008). Multistage
fuzzy load frequency control using PSO. Energy
Conversion and Management, 49(10), 2570-2580.
[42]. Shayeghi, H., Molaee, A., Valipour, K., & Ghasemi, A.
(2016, April). Multi-source power system FOPID based Load
Frequency Control with high-penetration of Distributed
Generations. In Electrical Power Distribution Networks
Conference (EPDC), 2016 21st Conference on (pp. 131-
136). IEEE.
[43]. Taher, S. A., Hematti, R., Abdolalipour, A., & Tabei, S. H.
(2008). Optimal decentralized load frequency control
using HPSO algorithms in deregulated power systems. American Journal of Applied Sciences, 5(9), 1167-1174.
[44]. Wood, A. J., & Wollenberg, B. F. (2012). Power
Generation, Operation, and Control. John Wiley & Sons.
[45]. Yu, Y. N. (1983). Electric Power System Dynamics.
Academic Press.
[46]. Zeynelgil, H. L., Demiroren, A., & Sengor, N. S. (2002).
The application of ANN technique to automatic generation
control for multi-area power system. International Journal
of Electrical Power & Energy Systems, 24(5), 345-354.
[47]. Zribi, M., Al-Rashed, M., & Alrifai, M. (2005). Adaptive
decentralized load frequency control of multi-area power
systems. International Journal of Electrical Power & Energy
Systems, 27(8), 575-583.
[48]. Zribi, M., Al-Rashed, M., & Alrifai, M. (2005). Adaptive
decentralized load frequency control of multi-area power
systems. International Journal of Electrical Power & Energy
Systems, 27(8), 575-583.