References
References
[1]. Ahlgren, D. C., Gilbert, M., Greenberg, D., Jeng, J.,
Malinowski, J., Nguyen-Ngoc, D. et al. (1996,
December). Manufacturability demonstration of an
integrated SiGe HBT technology for the analog and
wireless marketplace. In Electron Devices Meeting, 1996.
IEDM'96., International (pp. 859-862). IEEE.
[2]. Ahmed, F., Furqan, M., Aufinger, K., & Stelzer, A. (2016,
October). A SiGe-based broadband 100–180-GHz
differential power amplifier with 11 dBm peak output
power and> 1.3 THz GBW. In Microwave Integrated
th Circuits Conference (EuMIC), 2016 11 European (pp.
257-260). IEEE.
[3]. Al-Eryani, J., Knapp, H., Wursthorn, J., Aufinger, K., Li,
H., Majied, S. et al. (2016, October). A fundamental
229–240 GHz VCO with integrated dynamic frequency
divider chain. In Microwave Conference (EuMC), 2016
th 46 European (pp. 489-492). IEEE.
[4]. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano,
A., Soong, A. C. et al. (2014). What will 5G be? IEEE Journal
on Selected Areas in Communications, 32(6), 1065-1082.
[5]. Bai, P., Auth, C., Balakrishnan, S., Bost, M., Brain, R.,
Chikarmane, V. et al. (2004, December). A 65 nm logic
technology featuring 35nm gate lengths, enhanced
channel strain, 8 Cu interconnect layers, low-k ILD and
0.57/spl mu/m/sup 2/SRAM cell. In Electron Devices
Meeting, 2004. IEDM Technical Digest. IEEE International
(pp. 657-660). IEEE.
[6]. Bredendiek, C., Pohl, N., Aufinger, K., & Bilgic, A.
(2012, September). Differential signal source chips at 150
GHz and 220 GHz in SiGe bipolar technologies based on
Gilbert-Cell frequency doublers. In Bipolar/BiCMOS
Circuits and Technology Meeting (BCTM), 2012 IEEE (pp.
1-4). IEEE.
[7]. Chevalier, P., Avenier, G., Ribes, G., Montagné, A.,
Canderle, E., Céli, D. et al. (2014, December). A 55 nm
triple gate oxide 9 metal layers SiGe BiCMOS technology
featuring 320 GHz f T/370 GHz f MAX HBT and high-Q
millimeter-wave passives. In Electron Devices Meeting
(IEDM), 2014 IEEE International (pp. 3-9). IEEE.
[8]. Chevalier, P., Lacave, T., Canderle, E., Pottrain, A.,
Carminati, Y., Rosa, J. et al. (2012, October). Scaling of
SiGe BiCMOS technologies for applications above 100
GHz. In Compound Semiconductor Integrated Circuit
Symposium (CSICS), 2012 IEEE (pp. 1-4). IEEE.
[9]. Chevalier, P., Meister, T. F., Heinemann, B., Van
Huylenbroeck, S., Liebl, W., Fox, A. et al. (2011, October).
Towards THz SiGe HBTs. In Bipolar/BiCMOS Circuits and
Technology Meeting (BCTM), 2011 IEEE (pp. 57-65). IEEE.
[10]. Chevalier, P., Pourchon, F., Lacave, T., Avenier, G.,
Campidelli, Y., Depoyan, L. et al. (2009, October). A
Conventional Double-Polysilicon FSA-SEG Si/SiGe: C HBT
Reaching 400 GHz f . In Bipolar/BiCMOS Circuits and MAX
Technology Meeting, 2009. BCTM 2009, IEEE (pp. 1-4). IEEE.
[11]. Chiang, P. Y., Wang, Z., Momeni, O., & Heydari, P.
(2014). A silicon-based 0.3 THz frequency synthesizer with
wide locking range. IEEE Journal of Solid-State Circuits,
49(12), 2951-2963.
[12]. Chidambaram, P. R., Smith, B. A., Hall, L. H., Bu, H.,
Chakravarthi, S., Kim, Y. et al.(2004, June). 35% drive
current improvement from recessed-SiGe drain
extensions on 37 nm gate length PMOS. In VLSI
Technology, 2004. Digest of Technical Papers. 2004
Symposium on (pp. 48-49). IEEE.
[13]. Cisco. (n.d.). Retrieved from http://www.cisco.com/
[14]. Daembkes, H., Herzog, H. -J., Jorke, H., Kibbel, H.,
Kasper, E., (1986). The n-channel SiGe/Si modulationdoped
field-effect transistor, IEEE Transactions on Electron
Devices, 33(5), 633-638.
[15]. Daneshgar, S. & Buckwalter, J. F. (2015, October). A
22 dBm, 0.6 mm² D-Band SiGe HBT Power Amplifier using
Series Power Combining Sub-Quarter-Wavelength Baluns.
In Compound Semiconductor Integrated Circuit
Symposium (CSICS), 2015 IEEE (pp. 1-4). IEEE.
[16]. Del Alamo, J. A. & Swanson, R. M. (1986). Forwardbias
tunneling: a limitation to bipolar device scaling. IEEE
Electron Device Letters, 7(11), 629-631.
[17]. Del Rio, D., Gurutzeaga, I., Rezola, A., Sevillano, J. F.,
Velez, I., Gunnarsson, S. E. et al. (2017). A Wideband and
High-Linearity E-B and Transmitter Integrated in a 55-nm
SiGe Technology for Backhaul Point-to-Point 10-Gb/s Links.
IEEE Transactions on Microwave Theory and Techniques,
65(8), 2990-3001.
[18]. Fritsche, D., Leufker, J. D., Tretter, G., Carta, C., &
Ellinger, F. (2015). A Low-Power Broadband 200 GHz Down-
Conversion Mixer with Integrated LO-Driver in 0.13 m SiGe
BiCMOS. IEEE Microwave and Wireless Components
Letters, 25(9), 594-596.
[19]. Furqan, M., Ahmed, F., Feger, R., Aufinger, K., &
Stelzer, A. (2016, May). A 120-GHz wideband FMCW radar
demonstrator based on a fully-integrated SiGe
transceiver with antenna-in-package. In Microwaves for
Intelligent Mobility (ICMIM), 2016 IEEE MTT-S International
Conference on (pp. 1-4). IEEE.
[20]. Furqan, M., Ahmed, F., Heinemann, B., & Stelzer, A. (2017). A 15.5-dBm 160-GHz high-gain power amplifier in
SiGe BiCMOS technology. IEEE Microwave and Wireless
Components Letters, 27(2), 177-179.
[21]. Grzyb, J., Statnikov, K., Sarmah, N., Heinemann, B., &
Pfeiffer, U. R. (2016). A 210–270-GHz circularly polarized
FMCW radar with a single-lens-coupled SiGe HBT chip. IEEE
Transactions on Terahertz Science and Technology, 6(6),
771-783.
[22]. Han, R., Jiang, C., Mostajeran, A., Emadi, M.,
Aghasi, H., Sherry, H. et al. (2015). A SiGe terahertz
heterodyne imaging transmitter with 3.3 mW radiated
power and fully-integrated phase-locked loop. IEEE
Journal of Solid-State Circuits, 50(12), 2935-2947.
[23]. Heinemann, B., Rücker, H., Barth, R., Bärwolf, F.,
Drews, J., Fischer, G. G. et al. (2016, December). SiGe HBT
with f /f of 505 GHz/720 GHz. In Electron Devices x max
Meeting (IEDM), 2016 IEEE International (pp. 3-1). IEEE.
[24]. Hock, G., Kab, N., Hackbarth, T., Konig, U., & Kohn, E.
(2000, April). 0.1/spl mu/m T-gate p-type Ge/SiGe
MODFETs. In Silicon Monolithic Integrated Circuits in RF
Systems, 2000. Digest of Papers. 2000 Topical Meeting on
(pp. 156-158). IEEE.
[25]. Hoffman, J., Shopov, S., Chevalier, P., Cathelin, A.,
Schvan, P., & Voinigescu, S. P. (2016). 55-nm SiGe BiCMOS
distributed amplifier topologies for time-interleaved 120-
Gb/s fiber-optic receivers and transmitters. IEEE Journal of
Solid-State Circuits, 51(9), 2040-2053.
[26]. Hoyt, J. L., Nayfeh, H. M., Eguchi, S., Aberg, I., Xia,
G., Drake, T. et al. (2002, December). Strained silicon
MOSFET technology. In Electron Devices Meeting, 2002.
IEDM'02. International (pp. 23-26). IEEE.
[27]. ICCSS. (2017). Retrieved from http://isscc.org/2017/
wp-content/uploads/sites/11/2017/05/ISSCC2017
AdvanceProgram.pdf
[28]. Iyer, S. S., Patton, G. L., Delage, S. S., Tiwari, S., &
Stork, J. M. C. (1987). Silicon-germanium base
heterojunction bipolar transistors by molecular beam
epitaxy. In Electron Devices Meeting, 1987 International
(pp. 874-876). IEEE.
[29]. Iyer, S. S., Patton, G. L., Stork, J. M., Meyerson, B. S., &
Harame, D. L. (1989). Heterojunction bipolar transistors using Si-Ge alloys. IEEE Transactions on Electron Devices,
36(10), 2043-2064.
[30]. Jahn, M., Aufinger, K., Meister, T. F., & Stelzer, A.
(2012, June). 125 to 181 GHz fundamental-wave VCO
chips in SiGe technology. In Radio Frequency Integrated
Circuits Symposium (RFIC), 2012 IEEE (pp. 87-90). IEEE.
[31]. Jahn, M., Stelzer, A., & Hamidipour, A. (2010, May).
Highly integrated 79, 94, and 120-GHz SiGe radar
frontends. In Microwave Symposium Digest (MTT), 2010
IEEE MTT-S International (pp. 1324-1327). IEEE.
[32]. Jiang, C., Mostajeran, A., Han, R., Emadi, M., Sherry,
H., Cathelin, A. et al. (2016). A fully integrated 320 GHz
coherent imaging transceiver in 130 nm SiGe BiCMOS.
IEEE Journal of Solid-State Circuits, 51(11), 2596-2609.
[33]. Kim, D. H. & Rieh, J. S. (2011, December). A SiGe140-
GHz low power G m-boosted down-conversion mixer. In
Microwave Conference Proceedings (APMC), 2011 Asia-
Pacific (pp. 1126-1129). IEEE.
[34]. Kim, D. H. & Rieh, J. S. (2012). A 135 GHz differential
active star mixer in SiGe BiCMOS technology. IEEE
Microwave and Wireless Components Letters, 22(8), 409-
411.
[35]. Lanzerotti, L. D., Sturm, J. C., Stach, E., Hull, R.,
Buyuklimanli, T., & Magee, C. (1996, December).
Suppression of boron outdiffusion in SiGe HBTs by carbon
incorporation. In Electron Devices Meeting, 1996.
IEDM'96., International (pp. 249-252). IEEE.
[36]. Liang, R., Wang, J., Xu, J. (2009). A 240 GHz singlechip
radar transceiver in a SiGe bipolar technology with
on-chip antennas and ultra-wide tuning range. Tsinghua
Science and Technology, 14(1), 62-67.
[37]. Lin, H. C., & Rebeiz, G. M. (2013, October). A 200-
245 GHz balanced frequency doubler with peak output
power of +2 dBm. In Compound Semiconductor
Integrated Circuit Symposium (CSICS), 2013 IEEE (pp. 1-
4). IEEE.
[38]. Lin, H.-C. & Rebeiz, G. M. ( 2014). A 110–134-GHz
SiGe Amplifier With Peak Output Power of 100–120 mW.
IEEE Transactions on Microwave Theory and Techniques,
62(12), 2990-3000.
[39]. López, I. G., Rito, P., Petousi, D., Zimmermann, L.,
Kroh, M., Lischke, S. et al. (2017, January). A 40 Gb/s PAM-
4 monolithically integrated photonic transmitter in 0.25
?m SiGe: C BiCMOS EPIC platform. In Silicon Monolithic
th Integrated Circuits in RF Systems (SiRF), 2017 IEEE 17
Topical Meeting on (pp. 30-32). IEEE.
[40]. Lu, W., Kuliev, A., Koester, S. J., Wang, X. W., Chu, J.
O., Ma, T. P. et al. (2000). High performance 0.1/spl mu/m
gate-length p-type SiGe MODFET's and MOS-MODFET's.
IEEE Transactions on Electron Devices, 47(8), 1645-1652.
[41]. Marani, R. & Perri, A. G. (2012). Comparison of
electro-thermal performance of heterojunction bipolar
transistors based on Si/SiGe and AlGaAs/GaAs,
International Journal of Research and Reviews in Applied
Sciences, 12(2), 164-172.
[42]. Masini, G., Colace, L., Assanto, G., Luan, H. C.,
Wada, K., & Kimerling, L. C. (1999). High responsitivity
near infrared Ge photodetectors integrated on Si.
Electronics Letters, 35(17), 1467-1468.
[43]. Mertens, H., Magnée, P. H. C., Donkers, J. M., van
Dalen, R., Brunets, I., Van Huylenbroeck, S. et al. (2012,
September). Double-polysilicon self-aligned SiGe HBT
architecture based on nonselective epitaxy and
polysilicon reflow. In Bipolar/BiCMOS Circuits and
Technology Meeting (BCTM), 2012 IEEE (pp. 1-4). IEEE.
[44]. Mi, Q., Xiao, X., Sturm, J. C., Lenchyshyn, L. C., &
Thewalt, M. L. W. (1992). Room-temperature 1.3-and 1.5-
mu m electroluminescence from Si/Si/sub 1-x/Ge/sub
x/quantum wells. IEEE Transactions on Electron Devices,
39(11), 2678.
[45]. Muralidharan, S., Wu, K., & Hella, M. (2016,
January). A 110–132GHz VCO with 1.5 dBm peak output
power and 18.2% tuning range in 130nm SiGe BiCMOS for
D-Band transmitters. In Silicon Monolithic Integrated
th Circuits in RF Systems (SiRF), 2016 IEEE 16 Topical Meeting
on (pp. 64-66). IEEE.
[46]. O'Neill, A. G. & Antoniadis, D. A. (1995, September).
High speed deep sub-micron MOSFET using high mobility
strained silicon channel. In Solid State Device Research
th Conference, 1995. ESSDERC'95. Proceedings of the 25
European (pp. 109-112). IEEE.
[47]. Osten, H. J., Knoll, D., Heinemann, B., Rucker, H., &
Tillack, B. (1999). Carbon doped SiGe heterojunction
bipolar transistors for high frequency applications. In
Bipolar/BiCMOS Circuits and Technology Meeting, 1999.
Proceedings of the 1999 (pp. 109-116). IEEE.
[48]. Pekarik, J. J., Adkisson, J., Gray, P., Liu, Q., Camillo-
Castillo, R., Khater, M. et al. (2014, September). A 90 nm
SiGe BiCMOS technology for mm-wave and highperformance
analog applications. In Bipolar/BiCMOS
Circuits and Technology Meeting (BCTM), 2014 IEEE (pp.
92-95). IEEE.
[49]. People, R. (1986). Physics and applications of Ge x Si
1-x/Si strained-layer heterostructures. IEEE Journal of
Quantum Electronics, 22(9), 1696-1710.
[50]. Perri, A. G. (2016). Dispositivi Elettronici Avanzati, 1
Edn. Progedit, Bari, Italy.
[51]. Pfeiffer, U. R., Öjefors, E., & Zhao, Y. (2010, February).
A SiGe quadrature transmitter and receiver chipset for
emerging high-frequency applications at 160GHz. In
Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International (pp. 416-417).
IEEE.
[52]. Preisler, E., Talor, G., Howard, D., Yan, Z., Booth, R.,
Zheng, J. et al. (2011, October). A millimeter-wave
capable SiGe BiCMOS process with 270 GHz FMAX HBTs
designed for high volume manufacturing. In
Bipolar/BiCMOS Circuits and Technology Meeting (BCTM),
2011 IEEE (pp. 74-78). IEEE.
[53]. Rücker, H., Heinemann, B., & Fox, A., (2012). Half-
Terahertz SiGe BiCMOS technology, Proc. 2012 IEEE
Meeting on Silicon Monolithic Integrated Circuits in RF
(pp. 133-136).
[54]. Sadhu, B., Tousi, Y., Hallin, J., Sahl, S., Reynolds, S.,
Renström, Ö. et al. (2017, February). 7.2 A 28GHz 32-
element phased-array transceiver IC with concurrent dual
polarized beams and 1.4 degree beam-steering
resolution for 5G communication. In Solid-State Circuits
Conference (ISSCC), 2017 IEEE International (pp. 128-
129). IEEE.
[55]. Sarmah, N., Chevalier, P., & Pfeiffer, U. R. (2013). 160-
GHz Power Amplifier Design in Advanced SiGe HBT Technologies with F in Excess of 10 dBm. IEEE sat
Transactions on Microwave Theory and Techniques, 61(2),
939-947.
[56]. Sarmah, N., Grzyb, J., Statnikov, K., Malz, S.,
Vazquez, P. R., Föerster, W. et al. (2016). A fully integrated
240-GHz direct-conversion quadrature transmitter and
receiver chipset in SiGe technology. IEEE Transactions on
Microwave Theory and Techniques, 64(2), 562-574.
[57]. Schmalz, K., Winkler, W., Borngraber, J., Debski, W.,
Heinemann, B., & Scheytt, J. C. (2010). A Subharmonic
Receiver in SiGe Technology for 122 GHz Sensor
Applications. IEEE Journal of Solid-State Circuits, 45(9),
1644-1656.
[58]. Schröter, M. Rosenbaum, T., Chevalier, C.,
Heinemann, B., Voinigescu, S. P., Preisler, E. et al. (2017).
SiGe HBT Technology: Future Trends and TCAD-Based
Roadmap. Proceedings of the IEEE, 105(6), 1068-1086.
[59]. Shopov, S., Hasch, J., Chevalier, P., Cathelin, A., &
Voinigescu, S. P. (2015, October). A 240 GHz Synthesizer in
55 nm SiGe BiCMOS. In Compound Semiconductor
Integrated Circuit Symposium (CSICS), 2015 IEEE (pp. 1-4).
IEEE.
[60]. Slotboom, J. W., Streutker, G., Pruijmboom, A., &
Gravesteijn, D. J. (1991). Parasitic energy barriers in SiGe
HBTs. IEEE Electron Device Letters, 12(9), 486-488.
[61]. Song, S., Lee, S., Ryum, B., & Yoon, E. (1998, July).
Facet Formation in Selectively Overgrown Silicon by
Reduced Pressure Chemical Vapor Deposition. In
Microprocesses and Nanotechnology Conference, 1998
International (pp. 240-241). IEEE.
[62]. Statnikov, K., Grzyb, J., Heinemann, B., & Pfeiffer, U.
R. (2015). 160-GHz to 1-THz multi-color active imaging with
a lens-coupled SiGe HBT chip-set. IEEE Transactions on
Microwave Theory and Techniques, 63(2), 520-532.
[63]. STMicroelectronics. (n.d.). Retrieved from
http://www.st.com/content/st_com/en.html
[64]. Thompson, S. E., Sun, G., Choi, Y. S., & Nishida, T.
(2006). Uniaxial-process-induced strained-Si: Extending
the CMOS roadmap. IEEE Transactions on Electron
Devices, 53(5), 1010-1020.
[65]. Trivedi, V. P., John, J. P., Young, J., Dao, T., Morgan, D.,
Ma, R. et al. (2016, September). A 90 nm BiCMOS
technology featuring 400GHz f SiGe: C HBT. In MAX
Bipolar/BiCMOS Circuits and Technology Meeting (BCTM),
2016 IEEE (pp. 60-63). IEEE.
[66]. Voinigescu, S. P., Shopov, S., Bateman, J., Farooq, H.,
Hoffman, J., & Vasilakopoulos, K. (2017). Silicon
millimeter-wave, terahertz, and high-speed fiber-optic
device and benchmark circuit scaling through the 2030
ITRS horizon. Proceedings of the IEEE, 105(6), 1087-1104.
[67]. Voinigescu, S. P., Tomkins, A., Dacquay, E.,
Chevalier, P., Hasch, J., Chantre, A. et al. (2013). A study
of SiGe HBT signal sources in the 220-330-GHz range. IEEE
Journal of Solid-State Circuits, 48(9), 2011-2021.
[68]. Wanner, R., Lachner, R., Olbrich, G. R., & Russer, P.
(2007, June). A SiGe monolithically integrated 278 GHz
push-push oscillator. In Microwave Symposium, 2007.
IEEE/MTT-S International (pp. 333-336). IEEE.
[69]. Welser, J., Hoyt, J. L., & Gibbons, J. F. (1994). Electron
mobility enhancement in strained-Si n-type metal-oxidesemiconductor
field-effect transistors. IEEE Electron
Device Letters, 15(3), 100-102.
[70]. Winkler, W., Debski, W., Heinemann, B., Korndorfer, F.,
Rucker, H., Schmalz, K. et al. (2009, September). 122 GHz
low-noise-amplifier in SiGe technology. In ESSCIRC, 2009.
[71]. Yishay, R. B., Shumaker, E., & Elad, D. (2015). A 122-
150 GHz LNA with 30 dB gain and 6.2 dB noise figure in
SiGe BiCMOS technology. Proc. 2015 Meeting on Silicon
Monolithic Integrated Circuits in RF Systems (pp. 15-17).
[72]. Yoon, D. & Rieh, J. S. (2014). A 200 GHz heterodyne
image receiver with an integrated VCO in a SiGe BiCMOS
technology. IEEE Microwave and Wireless Components
Letters, 24(8), 557-559.
[73]. Yoon, D., Seo, M. G., Song, K., Kaynak, M., Tillack, B.,
& Rieh, J. S. (2017). 260-GHz differential amplifier in SiGe
heterojunction bipolar transistor technology. Electronics
Letters, 53(3), 194-196.
[74]. Yuan, H.-C., Jiang, N., Ma, Z., & Croke, E.T. (2006).
High-gain multi-finger power n-MODFET on Si substrate.
Electronics Letters, 42(6), 3375-377.
[75]. Zhang, B., Xiong, Y. Z., Wang, L., Hu, S., Lim, T. G.,
Zhuang, Y. Q. et al. (2010, November). 130-GHz gainenhanced
SiGe low noise amplifier. In Solid State Circuits
Conference (A-SSCC), 2010 IEEE Asian (pp. 1-4). IEEE.
[76]. Zhao, Y., Heinemann, B., & Pfeiffer, U. R. (2011,
October). Fundamental mode colpitts VCOs at 115 and
165-GHz. In Bipolar/BiCMOS Circuits and Technology
Meeting (BCTM), 2011 IEEE (pp. 33-36). IEEE.