References
[1]. Bouacha, K., Yallese, M. A., Mabrouki, T., & Rigal, J. F.
(2010). Statistical analysis of surface roughness and cutting
forces using Response Surface Methodology in hard
turning of AISI 52100 bearing steel with CBN tool.
International Journal of Refractory Metals and Hard
Materials, 28(3), 349-361.
[2]. Bouzid, L., Yallese, M. A., Belhadi, S., Mabrouki, T., &
Boulanouar, L. (2014). RMS-based optimisation of surface
roughness when turning AISI 420 stainless steel.
International Journal of Materials and Product Technology,
49(4), 224-251.
[3]. Choudhary, A., & Chauhan, S. R. (2013). Application of
Response Surface Methodology to evaluate the effect of
cutting tool inserts on machining of aluminium 7075 alloy
on CNC turning centre. International Journal of Machining
and Machinability of Materials, 13(1), 17-33.
[4]. Das, S. R., Kumar, A., & Dhupal, D. (2016). Experimental
investigation on cutting force and surface roughness in
machining of hardened AISI 52100 steel using CBN tool.
International Journal of Machining and Machinability of
Materials, 18(5-6), 501-521.
[5]. Dureja, J. S., Gupta, V. K., Sharma, V. S., & Dogra, M.
(2009). Design optimisation of flank wear and surface
roughness for CBN-TiN tools during dry hard turning of hot
work die steel. International Journal of Machining and
Machinability of Materials, 7(1-2), 129-147.
[6]. Kalidasan, R., Yatin, M., Sarma, D. K., Senthilvelan, S., &
Dixit, U. S. (2016). An experimental study of cutting forces
and temperature in multi-tool turning of grey cast iron.
International Journal of Machining and Machinability of
Materials, 18(5-6), 540-551.
[7]. Kumar, P. & Chauhan, S. R. (2015). Machinability Study
on finish Turning of AISI H13 Hot Working Die Tool Steel with
Cubic Boron Nitride (CBN) Cutting Tool inserts using
Response Surface Methodology (RSM). Arabian Journal for
Science & Engineering (Springer Science & Business Media
BV), 40(5), 1471-1485.
[8]. Kumar, S., Singh, D., & Kalsi, N. S. (2017). Optimization
and Modeling of Cutting Force and Chip-Tool Interface
Temperature during Hard Turning of AISI 4340 Steel under Wet Condition. i-manager's Journal on Mechanical
Engineering, 7(4), 16-26.
[10]. Mandal, N., Doloi, B., & Mondal, B. (2012). Force
prediction model of Zirconia Toughened Alumina (ZTA)
inserts in hard turning of AISI 4340 steel using Response
Surface Methodology. International Journal of Precision
Engineering and Manufacturing, 13(9), 1589-1599
[11]. Montgomery, D. C. (2017). Design and Analysis of
Experiments. John Wiley & Sons.
[12]. Nayak, M. & Sehgal, R. (2015). Effect of Tool Material
Properties and Cutting Conditions on Machinability of AISI
D6 Steel during Hard Turning. Arabian Journal for Science &
Engineering (Springer Science & Business Media BV), 40(4),
1151-1164
[13]. Rao, G. S. & Rao, A. N. (2012). Comparison of central
composite and orthogonal array designs for cutting force
and surface roughness prediction modelling in turning.
International Journal of Materials and Product Technology,
43(1-4), 144-164.
[14]. Salimiasl, A. & Özdemir, A. (2016). Modelling of the
cutting forces in turning process for a new tool.
International Journal of Mechatronics and Manufacturing
Systems, 9(2), 160-172.
[15]. Sharma, M. & Sehgal, R. (2016). Modelling of
Machining Process while Turning Tool Steel with CBN Tool.
Arabian Journal for Science & Engineering (Springer
Science & Business Media BV), 41(5), 1657-1678.
[16]. Standard, I. S. O. (1993). Tool-life testing with singlepoint
turning tools (ISO/DIS, 3685).
[17]. Suresh, M., Selvaraj, R. M., Rajkumar, K., &
Saravanan, V. M. (2017). Optimisation of cutting
parameters in CNC turning of EN-19 using tungsten
carbide. International Journal of Computer Aided
Engineering and Technology, 9(2), 218-228
[18]. Tamizharasan, T., Selvaraj, T., & Haq, A. N. (2006).
Analysis of tool wear and surface finish in hard turning. The
International Journal of Advanced Manufacturing Technology, 28(7-8), 671-679.
[20]. Thamma, R. (2008). Comparison between multiple
regression models to study effect of turning parameters on
the surface roughness. In Proceedings of the 2008 IAJCJME
International Conference (pp. 1-12).
[21]. Toh, C. K. (2004). Static and dynamic cutting force
analysis when high speed rough milling hardened steel.
Materials & Design, 25(1), 41-50.
[22]. Zhao, T., Zhou, J. M., Bushlya, V., & Ståhl, J. E. (2017).
Effect of cutting edge radius on surface roughness and tool
wear in hard turning of AISI 52100 steel. The International
Journal of Advanced Manufacturing Technology, 1-8.