Fault Location Estimation Systems: A Critical Review

A. Sanad Ahmed*, Mahmoud Abdallah Attia**, Nabil M. Hamed***, Almoataz Y. Abdelaziz****
* Deputy Project Manager, Siemens S.A.E, Egypt.
**,*** Assistant Professor, Department of Electric Power and Machines, Ain Shams University, Egypt.
**** Professor, Department of Electrical Power Engineering, Ain Shams University, Egypt.
Periodicity:June - August'2017
DOI : https://doi.org/10.26634/jcir.5.3.13813

Abstract

Energy reliability is a critical aspect nowadays in energy management. Especially transmission system is considered a very essential part in the grid. Using transmission system all customers can get the energy needed for all applications on all voltage levels. So, if a fault occurs in the transmission system, this will lead to outages at customer side affecting all applications, such as hospitals, factories, schools, universities, and houses. To keep the transmission system reliable, all types of fault should be detected and located in a very short period to clear the fault and restore the energy again. This introduces the topic of fault location estimation in smart grids, which is not a new topic, but it is optimized and enhanced nowadays using the available technology. This paper presents several techniques used to detect fault location using different methodologies and algorithms, comparing them all, and finally stating the conclusion.

Keywords

Fault Location, Optimization, Simulation, Simulink, MATLAB, Genetic Algorithm, Harmony Search, Teaching-Learning-based Optimization (TLBO) Technique

How to Cite this Article?

Sanad, A. A., Attia, M. A., Hamed, N. M., Abdelaziz, A. Y. (2017). Fault Location Estimation Systems: A Critical Review. i-manager’s Journal on Circuits and Systems, 5(3), 17-30. https://doi.org/10.26634/jcir.5.3.13813

References

[1]. Abdelaziz, A. Y., Elkhattam, W., Ezzat, M., & Sobhy, M. A. (2016, December). Fault section estimation in power systems Based on improved honey-bee mating optimization. In Power Systems Conference (MEPCON), 2016 Eighteenth International Middle East (pp. 246-252). IEEE.
[2]. Apostolopoulos, C. A. & Korres, G. N. (2010). A novel algorithm for locating faults on transposed/untransposed transmission lines without utilizing line parameters. IEEE Transactions on Power Delivery, 25(4), 2328-2338.
[3]. Ayyagari, S. B. (2011). Artificial neural network based fault location for transmission lines (Master's Theses, University of Kentucky).
[4]. Babu, M. S. P. & Rao, N. T. (2010). Implementation of Artificial Bee Colony (ABC) algorithm on garlic expert advisory system. Int. J. Comput. Sci. Res., 1(1), 69-74.
[5]. Baykasoglu, A, Özbakir, L., & Tapkan, P. (2004). Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem. Computer and Information Science, 5, 113-144.
[6]. Bedi, M. K. & Singh, S. (2013). Comparative study of two natural phenomena based optimization techniques. International Journal of Scientific & Engineering Research, 4(3), 1-4.
[7]. Bianchi, L., Gambardella, L. M., & Dorigo, M. (2002, September). An ant colony optimization approach to the probabilistic traveling salesman problem. In PPSN (pp. 883- 892).
[8]. Bilchev, G. & Parmee, I. C. (1995, April). The ant colony metaphor for searching continuous design spaces. In AISB Workshop on Evolutionary Computing (pp. 25-39). Springer, Berlin, Heidelberg.
[9]. Blesa, M. & Blum, C. (2004, March). Ant colony optimization for the maximum edge-disjoint paths problem. In Evo Workshops (pp. 160-169).
[10]. Blum, C. & Dorigo, M. (2005). Search bias in ant colony optimization: On the role of competition-balanced systems. IEEE Transactions on Evolutionary Computation, 9(2), 159-174.
[11]. Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2(4), 353-373.
[12]. Blum, C. (2005). Beam-ACO-Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research, 32(6), 1565-1591.
[13]. Blum, C. & Blesa, M. J. (2005, June). Combining Ant Colony Optimization with Dynamic Programming for Solving the k-Cardinality Tree Problem. In IWANN (pp. 25- 33).
[14]. Blum, C. & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(2), 1161-1172.
[15]. Bouthiba, T. (2004). Fault location in EHV transmission lines using artificial neural networks. International Journal of Applied Mathematics and Computer Science, 14(1), 69- 78.
[16]. Chanda, D., Kishore, N. K., & Sinha, A. K. (2004). Identification and classification of faults on transmission lines using wavelet multiresolution analysis. Electric Power Components and Systems, 32(4), 391-405.
[17]. Chen, W. H., Liu, C. W., & Tsai, M. S. (2001). Fast fault section estimation in distribution substations using matrixbased cause-effect networks. IEEE Transactions on Power Delivery, 16(4), 522-527.
[18]. Chen, W. H., Tsai, S. H., & Lin, H. I. (2011). Fault section estimation for power networks using logic cause-effect models. IEEE Transactions on Power Delivery, 26(2), 963- 971.
[19]. Chin, H. C. (2003). Fault section diagnosis of power system using fuzzy logic. IEEE Transactions on Power Systems, 18(1), 245-250.
[20]. Chong, C. S., Low, M. Y. H., Sivakumar, A. I., & Gay, K. L. (2006, December). A bee colony optimization algorithm to job shop scheduling. In Simulation Conference, 2006. WSC'06. Proceedings of the Winter (pp. 1954-1961). IEEE.
[21]. Cochocki, A. & Unbehauen, R. (1993). Neural Networks for Optimization and Signal Processing. John
[22 ]. Corry, P. & Kozan, E. (2004). Ant colony optimisation for machine layout problems. Computational Optimization and Applications, 28(3), 287-310.
[23]. Coury, D. V., Oleskovicz, M., & Aggarwal, R. K. (2002). An ANN routine for fault detection, classification, and location in transmission lines. Electric Power Components and Systems, 30(11), 1137-1149.
[24]. Dalstein, T. & Kulicke, B. (1995). Neural network approach to fault classification for high speed protective relaying. IEEE Transactions on Power Delivery, 10(2), 1002- 1011.
[25]. Das, B. & Das, D. (2014). Dynamic performances of split-shaft microturbine generator (MTG) system in standalone mode and when connected to a rural distribution network. Distributed Generation and Alternative Energy Journal, 29(4), 25-48.
[26]. Davis, W. P. (2013). Analysis of faults in overhead transmission lines (Master's Thesis, California State University).
[27]. Davoudi, M., Sadeh, J., & Kamyab, E. (2015). Parameter-free fault location for transmission lines based on optimisation. IET Generation, Transmission & Distribution, 9(11), 1061-1068.
[28]. de Oliveira, I. M. S., Schirru, R., & de Medeiros, J. A. C. C. (2009). On the performance of an Artificial Bee Colony optimization algorithm applied to the accident diagnosis in a PWR nuclear power plant. In 2009 International Nuclear Atlantic Conference (INAC 2009).
[29]. Dorigo, M. & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), 243-278.
[30]. Dorigo, M. & Stützle, T. (2003). The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances. In: Glover F., Kochenberger G.A. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science (Vol 57, pp. 251-286). Springer, Boston, MA.
[31]. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part (Cybernetics), 26(1), 29-41.
[32]. Elkalashy, N. I., Kawady, T. A., Khater, W. M., & Taalab, A. M. I. (2016). Unsynchronized fault-location technique for double-circuit transmission systems independent of line parameters. IEEE Transactions on Power Delivery, 31(4), 1591-1600.
[33]. Elmubark, O. A. E. A. E. (2011). Fault Detection, Classification and Location in Power Transmission Line System using Artificial Neural Networks (Doctoral Dissertation, Sudan University of Science and Technology).
[34]. Fausett, L. & Fausett, L. (1994). Fundamentals of Neural Networks: Architectures, Algorithms, and Applications (No. 006.3). Prentice-Hall,.
[35]. Fidanova, S. & Durchova, M. (2005, June). Ant algorithm for grid scheduling problem. In International Conference on Large-Scale Scientific Computing (pp. 405-412). Springer, Berlin, Heidelberg.
[36]. Gale, P. F., Crossley, P. A., Bingyin, X., Ge, Y., Cory, B. J., & Barker, J. R. G. (1993). Fault location based on travelling waves. In Proc. Fifth International Conference on Developments in Power System Protection (pp. 54-59).
[37]. Gurney, K. (1997). An Introduction to Neural Networks. CRC Press.
[38]. Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design. Boston Massachusetts PWS, 2, 734.
[39]. Haykin, S. (1994). Neural Networks. A Comprehensive Foundation. Macmillan Collage Publishing Company, Inc., New York.
[40]. Karaboga, D. & Akay, B. (2009, March). Artificial Bee Colony (ABC), harmony search and bees algorithms on numerical optimization. In Innovative Production Machines and Systems Virtual Conference.
[41]. Kaur, A., & Goyal, S. (2011). A bee colony optimization algorithm for fault coverage based regression test suite prioritization. International Journal of Advanced Science and Technology, 29, 17-30.
[42]. Kaur, A., & Goyal, S. (2011). A survey on the applications of bee colony optimization techniques. International Journal on Computer Science and Engineering, 3(8), 3037-3046.
[43]. Kennedy, J. & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE International Joint Conference on Neural Networks, (Vol. 4, pp. 1942-1948).
[44]. Kezunovic, M. (1997). A survey of neural net applications to protective relaying and fault analysis. Engineering Intelligent Systems for Electrical Engineering and Communications, 5, 185-192.
[45]. Koley, E., Jain, A., Thoke, A. S., Jain, A., & Ghosh, S. (2011, September). Detection and classification of faults on six phase transmission line using ANN. In Computer and n d Communication Technology (ICCCT), 2011 2 International Conference on (pp. 100-103). IEEE.
[46]. Kuok, K. K., Harun, S., & Shamsuddin, S. M. (2010). Particle swarm optimization feed forward neural network for hourly rainfall-runoff modeling in Bedup Basin, Malaysia. International Journal of Civil & Environmental Engineering, 9(10), 9-18.
[47]. Lee, C. Y., Shen, Y. X., Cheng, J. C., Li, Y. Y., & Chang, C. W. (2009). Neural networks and particle swarm optimization based MPPT for small wind power generator. World Academy of Science, Engineering and Technology, 60(2009), 17-23.
[48]. Lewis, L. J. (1951). Traveling wave relations applicable to power-system fault locators. Transactions of the American Institute of Electrical Engineers, 70(2), 1671- 1680.
[49]. Lopes, F. V., Silva, K. M., Costa, F. B., Neves, W. L. A., & Fernandes, D. (2015). Real-time traveling-wave-based fault location using two-terminal unsynchronized data. IEEE Transactions on Power Delivery, 30(3), 1067-1076.
[50]. Moghadas, R. K. & Gholizadeh, S. (2008). A New Wavelet Back Propagation Neural Networks for Structural Dynamic Analysis. Engineering Letters, 16(1).
[51]. Navrat, P., Jelinek, T., & Jastrzembska, L. (2009, December). Bee hive at work: A problem solving, optimizing mechanism. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on (pp. 122-127). IEEE.
[52]. Nhicolaievna, P. N. & Thanh, L. V. (2008). Bee Colony Algorithm for the Multidimensional Knapsack Problem. Proceedings of the International Multi Conference of
[53]. Niebur, D. & El-Sharkawi, M. (1996). Tutorial course on artificial neural networks with applications to power systems. In IEEE Power Engineering Society (pp. 117-125).
[54]. Saab, S. M., El-Omari, N. K. T., & Hussein, H. O. (2009). Developing optimization algorithm using artificial bee colony system. Ubiquitous Computing and Communication Journal, 4(5), 15-19.
[55]. Sahel, S. S. D. & Boudour, M. Application of particle swarm optimization based neural network to fault th classification. In Electrical Engineering (ICEE), 2015 4 International Conference on (pp. 1-4). IEEE.
[56]. Sahel, S. S. D. & Boudour, M. (2013). Fault Location in Transmission Lines using BP Neural Network Trained with PSO Algorithm. Journal of Energy and Power Engineering, 7(3), 603-611.
[57]. Sallim, J., Hussin, W., Syahrir, W. M., Abdullah, R., Khader, A. & Tajudin, A. (2007). A Background Study on Ant Colony Optimization Metaheuristic and its Application Principles in Resolving Three Combinatorial Optimization Problem. In National Conference on Software Engineering and Computer Systems, Legend Resort Kuantan.
[58]. Sanaye-Pasand, M. & Khorashadi-Zadeh, H. (2006). An extended ANN-based high speed accurate distance protection algorithm. International Journal of Electrical Power & Energy Systems, 28(6), 387-395.
[59]. Sekine, Y., Akimoto, Y., Kunugi, M., Fukui, C., & Fukui, S. (1992). Fault diagnosis of power systems. Proceedings of the IEEE, 80(5), 673-683.
[60]. Sekine, Y., Okamoto, H., & Shibamoto, T. (1989, July). Fault section estimation using cause-effect network. In nd Proceedings of 2 Symposium on Expert System Application to Power Systems (pp. 277-282).
[61]. Shi, Y. (2001). Particle swarm optimization: developments, applications and resources. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on (Vol. 1, pp. 81-86). IEEE.
[62]. Stanarevic, N., Tuba, M., & Bacanin, N. (2011). Modified Artificial Bee Colony algorithm for constrained problems optimization. International Journal of Mathematical Models and Methods in Applied Sciences, 5(3), 644-651.
[63]. Tang, Y., Wang, H. F., Aggarwal, R. K., & Johns, A. T. (2000). Fault indicators in transmission and distribution systems. In Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on (pp. 238-243). IEEE.
[64]. Tayeb, E. B. M. & Rhim, O. A. A. A. (2011, September). Transmission line faults detection, classification and location using artificial neural network. In Utility Exhibition on Power and Energy Systems: Issues & Prospects for Asia (ICUE), 2011 International Conference and (pp. 1-5). IEEE.
[65]. Teodorovic, D. & Dell'Orco, M. (2005). Bee colony optimization–a cooperative learning approach to complex transportation problems. Advanced OR and AI Methods in Transportation, 51-60.
[66]. Tsai, P. W., Pan, J. S., Liao, B. Y., & Chu, S. C. (2009). Enhanced artificial bee colony optimization. International Journal of Innovative Computing, Information and Control, 5(12), 5081-5092.
[67]. Wong, L. P., Low, M. Y. H., & Chong, C. S. (2010). Bee colony optimization with local search for traveling salesman problem. International Journal on Artificial Intelligence Tools, 19(03), 305-334.
[68]. Yang, X. S. (2005). Engineering optimizations via nature-inspired virtual bee algorithms. Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, 317-323
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.