References
[1]. Abu-Khater, I. S., Bellaouar, A., & Elmasry, M. I. (1996).
Circuit techniques for CMOS low-power high-performance
multipliers. IEEE Journal of Solid-State Circuits, 31(10), 1535-
1546.
[2]. Abu-Shama, E. & Bayoumi, M. (1995). A new cell for low
power adders. Proc. Int. Midwest Symp. Circuits and
Systems, 1014–1017.
.
[3]. Bhattacharyya, P., Kundu, B., Ghosh, S., Kumar, V., &
Dandapat, A. (2015). Performance Analysis of a Low-Power
High-Speed Hybrid 1-bit Full Adder Circuit. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 23(10).
[4]. Bui, H. T., Wang, Y., & Jiang, Y. (2002). Design and
analysis of low-power 10-transistor full adders using novel
XOR-XNOR gates. IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, 49(1), 25-30.
[5]. Chandrakasan, A. P. & Brodersen, R. W. (1995). Low
Power Digital CMOS Design. Kluwer AcademicPublishers
[6]. Chandrakasan, A. P., Sheng, S., & Brodersen, R. W.
(1992). Low power CMOS digital design. IEEE Journal of
Solid-State Circuits, 27(4), 473–484.
[7]. Chang, C. H., Gu, J., & Zhang, M. (2005). A review of
0.18-/spl mu/m full adder performances for tree structured
arithmetic circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 13(6), 686-695.
[8]. Foroutan, V., Taheri, M., Navi, K., & Mazreah, A. A.
(2014). Design of two Low-Power full adder cells using GDI
structure and hybrid CMOS logic style. INTEGRATION, the
VLSI Journal, 47(1), 48-61.
9]. Goel, S., Elgamel, M. A., & Bayoumi, M. A. (2003,
September). Novel design methodology for highperformance
XOR-XNOR circuit design. In Integrated
Circuits and Systems Design, 2003. SBCCI 2003.
th Proceedings. 16 Symposium on (pp. 71-76). IEEE.
[10]. Goel, S., Gollamudi, S., Kumar, A., & Bayoumi, M.
(2004). On the design of low-energy hybrid CMOS 1 -bit full
th adder cells, Proceedings of the 47 IEEE International
Midwest Symposium on Circuits and Systems, (pp.209-212).
[11]. Goel, S., Kumar, A., & Bayoumi, M. A. (2006). Design of
robust, energy-efficient full adders for deepsubmicrometer
design using hybrid-CMOS logic style. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
14(12), 1309-1321.
[12]. Kang, S. M., Leblebici, Y., & Kim, C. (2014). CMOS
Digital Integrated Circuits: Analysis & Design (No. EPFLBOOK-
202021). McGraw-Hill Higher Education.
[13]. King, T. J. (2005, May). FinFETs for nanoscale CMOS
digital integrated circuits. In Proceedings of the 2005
IEEE/ACM International Conference on Computer-Aided
Design (pp. 207-210). IEEE Computer Society.
[14]. Kumar, K. R., Reddy, P. M., Sadanandam, M., Kumar,
A. S., & Raju, M. (2017, February). Design of 2T XOR gate
based full adder using GDI technique. In Innovative
Mechanisms for Industry Applications (ICIMIA), 2017
International Conference on (pp. 10-13). IEEE.
[15]. Kumar, P. & Sharma, R. K. (2016). Low voltage high
performance hybrid full adder. Engineering Science and
Technology, an International Journal, 19(1), 559-565.
[16]. Lin, J. F., Hwang, Y. T., Sheu, M. H., & Ho, C. C. (2007). A
novel high-speed and energy efficient 10-transistor full
adder design. IEEE Transactions on Circuits and Systems I:
Regular Papers, 54(5), 1050-1059.
[17]. Morgenshtein, A., Fish, A., & Wagner, I. A. (2002).
Gate-diffusion input (GDI): A power-efficient method for
digital combinatorial circuits. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 10(5), 566-581.
[18]. Morgenshtein, A., Shwartz, I., & Fish, A. (2010,
November). Gate diffusion input (GDI) logic in standard
CMOS nanoscale process. In Electrical and Electronics
th Engineers in Israel (IEEEI), 2010 IEEE 26 Convention of (pp. 000776-000780). IEEE.
[19]. Mukherjee, B., & Ghosal, A. (2015, July). Design and
study of a low power high speed full adder using GDI
multiplexer. In Recent Trends in Information Systems (ReTIS),
nd 2015 IEEE 2 International Conference on (pp. 465-470).
IEEE.
[20]. Parameswar, A., Hara, H., & Sakurai, T. (1994, May). A
high speed, low power, swing restored pass-transistor logic
based multiply and accumulate circuit for multimedia
applications. In Custom Integrated Circuits Conference,
1994., Proceedings of the IEEE (pp. 278-281). IEEE.
[21]. Parameswar, A., Hara, H., & Sakurai, T. (1996). A swing
restored pass-transistor logic-based multiply and
accumulate circuit for multimedia applications. IEEE
Journal of Solid-State Circuits, 31(6), 804-809.
[22]. Rabaey, J. M., Chandrakasan, A. P., & Nikolic, B.
(2002). Digital Integrated Circuits (Vol. 2). Englewood Cliffs:
Prentice Hall.
[23]. Radhakrishnan, D. (2001). Low-voltage low-power
CMOS full adder. IEE Proceedings-Circuits, Devices and
Systems, 148(1), 19-24.
[24]. Semiconductor Industry Association. (2011).
International Technology Roadmap for Semiconductors.
Retreived from https://www.semiconductors.org/
clientuploads/Research_Technology/ITRS/2011/2011ExecS
um.pdf
[25]. Shalem, R., John, E., & John, L. K. (1999, March). A
novel low power energy recovery full adder cell. In VLSI,
1999. Proceedings. Ninth Great Lakes Symposium on (pp.
380-383). IEEE.
[26]. Shams, A. M., & Bayoumi, M. A. (1997, November). A
structured approach for designing low power adders. In
Signals, Systems, & Computers, 1997. Conference Record
of the Thirty-First Asilomar Conference on (Vol. 1, pp. 757- 761). IEEE.
.
[27]. Shams, A. M., & Bayoumi, M. A. (2000). A novel highperformance
CMOS 1-bit full-adder cell. IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal
Processing, 47(5), 478-481.
[28]. Shams, A. M., Darwish, T. K., & Bayoumi, M. A. (2002).
Performance analysis of low-power 1-bit CMOS full adder
cells. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 10(1), 20-29.
[29]. Shoba, M., & Nakkeeran, R. (2016). GDI based full
adders for energy efficient arithmetic applications.
Engineering Science and Technology, an International
Journal, 19(1), 485-496.
[30]. Vai, M. M. (2001). VLSI Design. Taylor & Francis
[31]. Vesterbacka, M. (1999). A 14-transistor CMOS full
adder with full voltage-swing nodes. In Signal Processing
Systems, 1999. SiPS 99. 1999 IEEE Workshop on (pp. 713-
722). IEEE.
[32]. Wairya, S., Singh, G., Nagaria, R. K., & Tiwari, S. (2011,
December). Design analysis of XOR (4T) based low voltage
CMOS full adder circuit. In Engineering (NUiCONE), 2011
Nirma University International Conference on (pp. 1-7).
IEEE.
[33]. Wang, J. M., Fang, S. C., & Feng, W. S. (1994). New
efficient designs for XOR and XNOR functions on the
transistor level. IEEE Journal of Solid-State Circuits, 29(7),
780-786.
[34]. Weste, N., & Harris, D. (2005). CMOS VLSI Design.
Pearson Wesley.
[35]. Zhuang, N., & Wu, H. (1992). A new design of the
CMOS full adder. IEEE Journal of Solid-State Circuits, 27(5),
840-844.