References
[1]. Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic
wireless nanosensor networks. Nano Communication
Networks, 1(1), 3-19.
[2]. Anand, S., Kumar, D. S., Wu, R. J., & Chavali, M. (2014).
Analysis and design of optically transparent antenna on
photonic band gap structures. Optik-International Journal
for Light and Electron Optics, 125(12), 2835-2839.
[3]. Anand, S., Kumar, D. S., Wu, R. J., & Chavali, M. (2014).
Graphene nanoribbon based terahertz antenna on
polyimide substrate. Optik-International Journal for Light
and Electron Optics, 125(19), 5546-5549.
[4]. Bayram, Y., Zhou, Y., Shim, B. S., Xu, S., Zhu, J., Kotov, N.
A. et al. (2010). E-textile conductors and polymer
composites for conformal lightweight antennas. IEEE
Transactions on Antennas and Propagation, 58(8), 2732-
2736.
[5]. Galoda, S., & Singh, G. (2007). Fighting terrorism with
terahertz. IEEE Potentials, 26(6), 24-29.
[6]. Gonzalo, R., Martinez, B., & de Maagt, P. (1999). The
effect of dielectric permittivity on the properties of photonic
bandgap devices. Microwave and Optical Technology
Letters, 23(2), 92-95.
[7]. Grade, J., Haydon, P., & van der Weide, D. (2007).
Electronic terahertz antennas and probes for
spectroscopic detection and diagnostics. Proceedings of
the IEEE, 95(8), 1583-1591.
[8]. Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z. et
al. (2011). Graphene plasmonics for tunable terahertz
metamaterials. Nature Nanotechnology, 6(10), 630-634.
[9]. Kumar, P., Singh, A. K., Singh, G., Chakravarty, T., &
Bhooshan, S. (2006). Terahertz technology-a new direction.
In Proc. IEEE Int. Symp. Microwave (pp. 195-201). IEEE.
[10]. Liu, H., Li, Z., Sun, X., & Mao, J. (2005). Harmonic
suppression with photonic bandgap and defected ground
structure for a microstrip patch antenna. IEEE Microwave
and Wireless Components Letters, 15(2), 55-56.
[11]. Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet,
J. M., Alarcón, E., & Chigrin, D. N. (2012). Graphene-based
nano-patch antenna for terahertz radiation. Photonics and
Nanostructures - Fundamentals and Applications, 10(4),
353-358.
[12]. Llatser, I., Kremers, C., Chigrin, D. N., Jornet, J. M.,
Lemme, M. C., Cabellos-Aparicio, A. et al. (2012, March).
Characterization of graphene-based nano-antennas in
the terahertz band. In Antennas and Propagation (EUCAP),
th 2012 6 European Conference on (pp. 194-198). IEEE.
[13]. Mikhailov, S. A., & Ziegler, K. (2007). New
electromagnetic mode in graphene. Physical Review
Letters, 99(1), 016803.
[14]. Naumis, G. G., Terrones, M., Terrones, H., & Gaggero-
Sager, L. M. (2009). Design of graphene electronic devices
using nanoribbons of different widths. Applied Physics
Letters, 95(18), 182104.
[15]. Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D.,
Katsnelson, M., Grigorieva, I. et al. (2005). Twodimensional
gas of massless Dirac fermions in graphene.
Nature, 438(7065), 197-200.
[16]. Rashed, A. N. Z. & Sharshar, H. A. (2013). Optical
microstrip patch antennas design and analysis. Optik-
International Journal for Light and Electron Optics, 124(20),
4331-4335.
[17]. Tamagnone, M., Gomez-Diaz, J. S., Mosig, J. R., &
Perruisseau-Carrier, J. (2012). Reconfigurable terahertz
plasmonic antenna concept using a graphene stack.
Applied Physics Letters, 101(21), 214102.
[18]. Tang, Q. Y., Pan, Y. M., Chan, Y. C., & Leung, K. W.
(2012). Frequency-tunable soft composite antennas for
wireless sensing. Sensors and Actuators A: Physical, 179,
137-145.
[19]. Vizard, D. R. (2006). Millimeter-wave applications:
From satellite communications to security systems.
Microwave Journal, 49(7), 22-36.
[20]. Woolard, D. L., Loerop, W. R., & Shur, M. S. (Eds.).
(2003). Terahertz Sensing Technology: Volume 1: Electronic
Devices and Advanced Systems Technology (Vol. 30). World
Scientific.
[21]. Yan, H. G. et al. (2013). Damping pathways of midinfrared
plasmons in graphene nanostructures. Nat.
Photonics 2013, 7, 394-399.