High Gain Highly Directive Graphene Based Terahertz Antenna for Wireless Communication

Subodh Kumar Tripathi*, Ajay Kumar**
* Research Scholar, Department of Electronics Engineering, I.K.G. Punjab Technical University, Jalandhar, India..
** Associate Professor, Department of Electronics and Communication Engineering, Beant College of Engineering and Technology, Gurudaspur, Punjab, India.
Periodicity:August - October'2017
DOI : https://doi.org/10.26634/jcs.6.4.13804

Abstract

Terahertz frequency range (from 0.1 THz to 10 THz) which is not fully utilized, has attracted many researchers because of extreme possibility of applications in the unused band. This paper shows the inclusion of graphene with Photonic Band Gap (PBG) in antenna and its effect in the performance of the proposed antenna. The designs, i.e. simple graphene based patch antenna, graphene based slotted ground patch antenna and graphene patch with PBG based antenna in terahertz regime with high gain, high directivity, good impedance matching are proposed here. The proposed antenna shows maximum gain of 5.74 dB and maximum directivity of 6.57 dB. Graphene has been used by many researchers for different applications, including terahertz radiator and terahertz absorber. Here graphene exceptional properties are utilized in terahertz regime antenna for wireless network applications. Good gain and good directivity of the proposed antenna shows better radiation efficiency of the antenna in the THz regime

Keywords

Graphene, Multi Slotted Ground, Terahertz Antenna, Terahertz Frequency, Photonic Band Gap Structure

How to Cite this Article?

Tripathi, S. K., and Kumar, A. (2017). High Gain Highly Directive Graphene Based Terahertz Antenna for Wireless Communication. i-manager’s Journal on Communication Engineering and Systems, 6(4), 16-23. https://doi.org/10.26634/jcs.6.4.13804

References

[1]. Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3-19.
[2]. Anand, S., Kumar, D. S., Wu, R. J., & Chavali, M. (2014). Analysis and design of optically transparent antenna on photonic band gap structures. Optik-International Journal for Light and Electron Optics, 125(12), 2835-2839.
[3]. Anand, S., Kumar, D. S., Wu, R. J., & Chavali, M. (2014). Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik-International Journal for Light and Electron Optics, 125(19), 5546-5549.
[4]. Bayram, Y., Zhou, Y., Shim, B. S., Xu, S., Zhu, J., Kotov, N. A. et al. (2010). E-textile conductors and polymer composites for conformal lightweight antennas. IEEE Transactions on Antennas and Propagation, 58(8), 2732- 2736.
[5]. Galoda, S., & Singh, G. (2007). Fighting terrorism with terahertz. IEEE Potentials, 26(6), 24-29.
[6]. Gonzalo, R., Martinez, B., & de Maagt, P. (1999). The effect of dielectric permittivity on the properties of photonic bandgap devices. Microwave and Optical Technology Letters, 23(2), 92-95.
[7]. Grade, J., Haydon, P., & van der Weide, D. (2007). Electronic terahertz antennas and probes for spectroscopic detection and diagnostics. Proceedings of the IEEE, 95(8), 1583-1591.
[8]. Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z. et al. (2011). Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 6(10), 630-634.
[9]. Kumar, P., Singh, A. K., Singh, G., Chakravarty, T., & Bhooshan, S. (2006). Terahertz technology-a new direction. In Proc. IEEE Int. Symp. Microwave (pp. 195-201). IEEE.
[10]. Liu, H., Li, Z., Sun, X., & Mao, J. (2005). Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna. IEEE Microwave and Wireless Components Letters, 15(2), 55-56.
[11]. Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcón, E., & Chigrin, D. N. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures - Fundamentals and Applications, 10(4), 353-358.
[12]. Llatser, I., Kremers, C., Chigrin, D. N., Jornet, J. M., Lemme, M. C., Cabellos-Aparicio, A. et al. (2012, March). Characterization of graphene-based nano-antennas in the terahertz band. In Antennas and Propagation (EUCAP), th 2012 6 European Conference on (pp. 194-198). IEEE.
[13]. Mikhailov, S. A., & Ziegler, K. (2007). New electromagnetic mode in graphene. Physical Review Letters, 99(1), 016803.
[14]. Naumis, G. G., Terrones, M., Terrones, H., & Gaggero- Sager, L. M. (2009). Design of graphene electronic devices using nanoribbons of different widths. Applied Physics Letters, 95(18), 182104.
[15]. Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I. et al. (2005). Twodimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200.
[16]. Rashed, A. N. Z. & Sharshar, H. A. (2013). Optical microstrip patch antennas design and analysis. Optik- International Journal for Light and Electron Optics, 124(20), 4331-4335.
[17]. Tamagnone, M., Gomez-Diaz, J. S., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102.
[18]. Tang, Q. Y., Pan, Y. M., Chan, Y. C., & Leung, K. W. (2012). Frequency-tunable soft composite antennas for wireless sensing. Sensors and Actuators A: Physical, 179, 137-145.
[19]. Vizard, D. R. (2006). Millimeter-wave applications: From satellite communications to security systems. Microwave Journal, 49(7), 22-36.
[20]. Woolard, D. L., Loerop, W. R., & Shur, M. S. (Eds.). (2003). Terahertz Sensing Technology: Volume 1: Electronic Devices and Advanced Systems Technology (Vol. 30). World Scientific.
[21]. Yan, H. G. et al. (2013). Damping pathways of midinfrared plasmons in graphene nanostructures. Nat. Photonics 2013, 7, 394-399.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.