References
[1]. Asaduzzaman, A., Rani, M., & Sibai, F. N. (2010,
December). On the design of low-power cache
memories for homogeneous multi-core processors. In
Microelectronics (ICM), 2010 International Conference
on (pp. 387-390). IEEE.
[2]. Bae, Y. C., Park, J. Y., Rhee, S. J., Ko, S. B., Jeong, Y., Noh, K. S. et al. (2012, February). A 1.2 V 30nm 1.6
Gb/s/pin 4GB LPDDR3 SDRAM with input skew calibration
and enhanced control scheme. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2012 IEEE
International (pp. 44-46). IEEE.
[3]. Baghel, V. S., & Akashe, S. (2015, February). Low
power memristor based 7T SRAM using MTCMOS
technique. In Advanced Computing & Communication
Technologies (ACCT), 2015 Fifth International Conference
on (pp. 222-226). IEEE.
[4]. Bhattacharjee, A., Contreras, G., & Martonosi, M.
(2008, August). Full-system chip multiprocessor power
evaluations using FPGA-based emulation. In Low Power
Electronics and Design (ISLPED), 2008 ACM/IEEE
International Symposium on (pp. 335-340). IEEE.
[5]. Calagos, M., & Chu, Y. (2016, July). Buffer-controlled
c a c h e f o r l o w- p o w e r m u l t i c o r e s y s t e m s. I n
Communications and Electronics (ICCE), 2016 IEEE Sixth
International Conference on (pp. 147-152). IEEE.
[6]. Chauhan, R., Vyavahare, P., & Kothamasu, S. (2015,
March). Fail-safe I/O to control RESET# pin of DDR3 SDRAM
and achieve ultra-low system power. In Quality Electronic
th Design (ISQED), 2015 16 International Symposium on (pp.
357-360). IEEE.
[7]. Chen, X., & Jha, N. K. (2016). A 3-D CPU-FPGA-DRAM
Hybrid Architecture for Low-Power Computation. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 24(5), 1649-1662.
[8]. Choi, W., & Park, J. (2016). A Charge-Recycling Assist
Technique for Reliable and Low Power SRAM Design. IEEE
Transactions on Circuits and Systems I: Regular Papers,
63(8), 1164-1175.
[9]. Gaillardon, P. E., Tang, X., Sandrini, J., Thammasack, M., Omam, S. R., Sacchetto, D., et al. (2015, March). An
ultra-low-power FPGA based on monolithically integrated
RRAMs. In Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition (pp. 1203-1208).
EDA Consortium.
[10]. Imani, M., Patil, S., & Rosing, T. (2016, March). Low
power data-aware STT-RAM based hybrid cache
architecture. In Quality Electronic Design (ISQED), 2016
th 17 International Symposium on (pp. 88-94). IEEE.
[11]. Imani, M., Rahimi, A., Kim, Y., & Rosing, T. (2016,
August). A low-power hybrid magnetic cache
architecture exploiting narrow-width values. In Non-
Volatile Memory Systems and Applications Symposium
th (NVMSA), 2016 5 (pp. 1-6). IEEE.
[12]. Ito, M., & Ohara, M. (2016, April). A power-efficient
FPGA accelerator: Systolic array with cache-coherent
interface for pair-HMM algorithm. In Low-Power and High-
Speed Chips (COOL CHIPS XIX), 2016 IEEE Symposium in
(pp. 1-3). IEEE.
[13]. Jang, S. J., Chung, M. K., Kim, J., & Kyung, C. M.
(2007, May). Cache miss-aware dynamic stack
allocation. In Circuits and Systems, 2007. ISCAS 2007. IEEE
International Symposium on (pp. 3494-3497). IEEE.
[14]. Jeong, H., Park, J., Oh, T. W., Rim, W., Song, T., Kim, G.,
et al. (2016). Bitline Precharging and Preamplifying
Switching pMOS for High-Speed Low-Power SRAM. IEEE
Transactions on Circuits and Systems II: Express Briefs,
63(11), 1059-1063.
[15]. Kamoun, N., Bossuet, L., & Ghazel, A. (2008,
December). SRAM-FPGA implementation of masked SBox
based DPA countermeasure for AES. In Design and Test
rd Workshop, 2008. IDT 2008. 3 International (pp. 74-77).
IEEE.
[16]. Kaushik, C. S. H., Vanjarlapati, R. R., Krishna, V. M.,
Gautam, T., & Elamaran, V. (2014, March). VLSI design of
low power SRAM architectures for FPGAs. In Green
Computing Communication and Electrical Engineering
(ICGCCEE), 2014 International Conference on (pp. 1-4).
IEEE.
[17]. Kim, J. P., Yang, W., & Tan, H. Y. (2003). A low-power
256-MB SDRAM with an on-chip thermometer and biased reference line sensing scheme. IEEE Journal of Solid-State
Circuits, 38(2), 329-337.
[18]. Kim, S. H., Lee, W. O., Kim, J. H., Lee, S. S., Hwang, S.
Y., Kim, C. I., et al. (2007, November). A low power and
highly reliable 400Mbps mobile DDR SDRAM with on-chip
distributed ECC. In Solid-State Circuits Conference, 2007.
ASSCC'07. IEEE Asian (pp. 34-37). IEEE.
[19]. Lee, J. C., Jin, S. H., Kim, D. S., Ku, Y. J., Kim, C., Park,
B. K., et al. (2011, November). A low-power small-area
open loop digital DLL for 2.2 Gb/s/pin 2Gb DDR3 SDRAM. In
Solid State Circuits Conference (A-SSCC), 2011 IEEE Asian
(pp. 157-160). IEEE.
[20]. Leming, G. V., & Nepal, K. (2009, August). Low-Power
FPGA routing switches using adaptive body biasing
technique. In Circuits and Systems, 2009. MWSCAS'09.
nd 52 IEEE International Midwest Symposium on (pp. 447-
450). IEEE.
[21]. Li, C., Qiao, F., & Yang, H. (2010, June). Low power
cache architecture with security mechanism. In
nd Education Technology and Computer (ICETC), 2010 2
International Conference on (Vol. 1, pp. V1-573). IEEE.
[22]. Lin, T. J., Zhang, W., & Jha, N. K. (2012). SRAM-based
NATURE: A dynamically reconfigurable FPGA based on 10T
low-power SRAMs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 20(11), 2151-2156.
[23]. Liu, Z. Y., Shih, H. C., Lin, B. Y., & Wu, C. W. (2017).
Controller Architecture for Low-Power, Low-Latency DRAM
with Built-in Cache. IEEE Design & Test, 34(2), 69-78.
[24]. Miura, S., Ayukawa, K., & Watanabe, T. (2001,
August). A dynamic-SDRAM-mode-control scheme for
low-power systems with a 32-bit RISC CPU. In Proceedings
of the 2001 International Symposium on Low Power
Electronics and Design (pp. 358-363). ACM.
[25]. Oguntebi, T., Hong, S., Casper, J., Bronson, N.,
Kozyrakis, C., & Olukotun, K. (2010, May). FARM: A
p r o t o t y p i n g e n v i r o nme n t f o r t i g h t l y- c o u p l e d,
heterogeneous architectures. In Field-Programmable
th Custom Computing Machines (FCCM), 2010 18 IEEE
Annual International Symposium on (pp. 221-228). IEEE.
[26]. Peng, M., & Liu, X. (2013, June). Adaptive Rapid
Reconfigurable Algorithm for Low Power Cache. In Computational and Information Sciences (ICCIS), 2013
Fifth International Conference on (pp. 203-206). IEEE.
[27]. Ramaswamy, S., & Yalamanchili, S. (2007).
Improving cache efficiency via resizing & plus;
th remapping. In Proceedings of the 25 International
Conference on Computer Design (pp. 47-54). IEEE.
[28]. Ritzenthaler, R., Schram, T., Bury, E., Spessot, A.,
Caillat, C., Srividya, V., et al. (2013). Low-power DRAMcompatible
replacement gate high-k/metal gate stacks.
Solid-State Electronics, 84, 22-27.
[29]. Sampson, J., Arora, M., Goulding-Hotta, N.,
Venkatesh, G., Babb, J., Bhatt, V., et al. (2011,
September). An evaluation of selective depipelining for
F P G A- b a s e d e n e r g y- r e d u c i n g i r r e g u l a r c o d e
coprocessors. In Field Programmable Logic and
Applications (FPL), 2011 International Conference on (pp.
24-29). IEEE.
[30]. Seyedi, A., Armejach, A., Cristal, A., Unsal, O. S., &
Valero, M. (2012, November). Novel SRAM bias control
circuits for a low power L1 data cache. In NORCHIP, 2012
(pp. 1-6). IEEE.
[31]. Simon, W., Yüzügüler, A. C., Ibrahim, A., Angiolini, F.,
Arditi, M., Thiran, J. P., et al. (2016, August). Single-FPGA,
scalable, low-power, and high-quality 3D ultrasound
beamformer. In Field Programmable Logic and
th Applications (FPL), 2016 26 International Conference on
(pp. 1-2). IEEE.
[32]. Sterpone, L., Carro, L., Matos, D., Wong, S., & Fakhar,
F. (2011, March). A new reconfigurable clock-gating
technique for low power SRAM-based FPGAs. In Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2011 (pp. 1-6). IEEE.
[33]. Sutar, S., Raha, A., & Raghunathan, V. (2016,
October). D-PUF: an intrinsically reconfigurable dram puf
for device authentication in embedded systems. In
Compliers, Architectures, and Synthesis of Embedded
Systems (CASES), 2016 International Conference on (pp.
1-10). IEEE.
[34]. Suzuki, D., & Hanyu, T. (2016, August). A low-power
MTJ-based nonvolatile FPGA using self-terminated logicin-
memory structure. In Field Programmable Logic and
th Applications (FPL), 2016 26 International Conference on
(pp. 1-4). IEEE.
[35]. Tang, X., Gaillardon, P. E., & De Micheli, G. (2014,
December). A high-performance low-power near-Vt
RRAM-based FPGA. In Field-Programmable Technology
(FPT), 2014 International Conference on (pp. 207-214).
IEEE.
[36]. Wang, Y., Bhattacharya, U., Hamzaoglu, F., Kolar, P.,
Ng, Y. G., Wei, L., et al. (2010). A 4.0 GHz 291 Mb voltagescalable
SRAM design in a 32 nm high-k+ metal-gate
CMOS technology with integrated power management.
IEEE Journal of Solid-State Circuits, 45(1), 103-110.
[37]. Xu, C., Zhang, G., & Hao, S. (2009, July). Fast wayprediction
instruction cache for energy efficiency and
high performance. In Networking, Architecture, and
Storage, 2009. NAS 2009. IEEE International Conference
on (pp. 235-238). IEEE.
[38]. Yoshimi, M., Kudo, R., Oge, Y., Terada, Y., Irie, H., &
Yoshinaga, T. (2014, September). An FPGA-based tightly
coupled accelerator for data-intensive applications. In
Embedded Multicore/Manycore SoCs (MCSoC), 2014
th IEEE 8 International Symposium on (pp. 289-296). IEEE.
[39]. Zaitsu, K., Tatsumura, K., Matsumoto, M., Oda, M.,
Fujita, S., & Yasuda, S. (2014, June). Flash-based
nonvolatile programmable switch for low-power and
high-speed FPGA by adjacent integration of
MONOS/logic and novel programming scheme. In VLSI
Technology (VLSI-Technology): Digest of Technical Papers,
2014 Symposium on (pp. 1-2). IEEE.
[40]. Zhang, T., Chen, K., Xu, C., Sun, G., Wang, T., & Xie, Y.
(2014, June). Half-DRAM: A high-bandwidth and lowpower
DRAM architecture from the rethinking of finegrained
activation. In Computer Architecture (ISCA),
st 2014 ACM/IEEE 41 International Symposium on (pp. 349-
360). IEEE.