References
[1]. American Psychiatric Association. Diagnostic and
Statistical Manual of Mental Disorders.(1994). ((DSM IV))
Washington DC. American Psychiatric Association.
[2]. Cook, M., Soloveichik, D., Winfree, E., & Bruck, J.
(2009). Programmability of chemical reaction networks.
Algorithmic Bioprocesses, 543-584.
[3]. Gangwar, M., Mishra, R. B., & Yadav, R. S. (2012).
Intelligent Computing Method for the Interpretation of
Neuropsychiatric Diseases. International Journal of
Computer Applications, 55(17), 23-31.
[4]. Gangwar, M., Mishra, R. B., & Yadav, R. S. (2013).
Intelligent Computing Methods for The Interpretation of Neuropsychiatric Diseases Based on Rbr-Cbr-Ann
Integration. International Journal of Computers &
Technology, 11(5), 2490-2511.
[5]. Jackson, R. G., Patel, R., Jayatilleke, N., Kolliakou, A.,
Ball, M., Gorrell, G., et al. (2017). Natural language
processing to extract symptoms of severe mental illness
from clinical text: The Clinical Record Interactive Search
Comprehensive Data Extraction (CRIS-CODE) project.
BMJ Open, 7(1), e012012.
[6]. Johnson, P., Vandewater, L., Wilson, W., Maruff, P.,
Savage, G., Graham, P., et al. (2014). Genetic algorithm
with logistic regression for prediction of progression to
Alzheimer's disease. BMC Bioinformatics, 15(16), S11.
[7]. Kovalchuk, Y., Stewart, R., Broadbent, M., Hubbard, T.
J., & Dobson, R. J. (2017). Analysis of diagnoses extracted
from electronic health records in a large mental health
case register. PloS One, 12(2), e0171526.
[8]. Pistollato, F., Ohayon, E. L., Lam, A., Langley, G. R.,
Novak, T. J., Pamies, D., et al. (2016). Alzheimer disease
research in the 21st century: past and current failures, new
perspectives and funding priorities. Oncotarget, 7(26),
38999.
[9]. Prinzie, A., & Van den Poel, D. (2008). Random forests
for multiclass classification: Random multinomial logit.
Expert Systems with Applications, 34(3), 1721-1732.
[10]. Sumathi, M. R., & Poorna, B. (2016). Prediction of
Mental Health Problems Among Children Using Machine
Learning Techniques. International Journal of Advanced
Computer Science and Applications, 7(1), 552-557.
[11]. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016).
Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann.