References
[1]. Akdogan, A. N., & Durakbasa, M. N. (2008). Thermal
cycling experiments for glass moulds surface texture
lifetime prediction–Evaluation with the help of statistical
techniques. Measurement, 41(6), 697-703.
[2]. Bansal, P., Padture, N. P., & Vasiliev, A. (2003). Improved
interfacial mechanical properties of Al2O3 -13wt% TiO2
plasma-sprayed coatings derived from nanocrystalline
powders. Acta Materialia, 51(10), 2959-2970.
[3]. Brand, J., Gadow, R., & Killinger, A. (2004). Application
of diamond-like carbon coatings on steel tools in the production of precision glass components. Surface and
Coatings Technology, 180, 213-217.
[4]. Cable, M. (1999). Mechanization of glass
manufacture. Journal of the American Ceramic Society,
82(5), 1093-1112.
[5]. Callister, W.D., Rethwisch, D.G. & Balasubramaniam, R.
(2017). Materials Science and Engineering, Chaudhary
Press, Delhi, India.
[6]. Choi, I. S., & Park, J. C. (2000). The corrosion behavior of
TiAlN coatings prepared by PVD in a hydrofluoric gas
atmosphere. Surface and Coatings Technology, 131(1),
383-385.
[7]. Cingi, M., Arisoy, F., Basman, G., & Sesen, K. (2002). The
effects of metallurgical structures of different alloyed glass
mold cast irons on the mold performance. Materials
letters, 55(6), 360-363.
[8]. Firestone, G. C., & Yi, A. Y. (2005). Precision
compression molding of glass microlenses and microlens
arrays-An experimental study. Applied Optics, 44(29),
6115-6122.
[9]. Ghrib, T., Tlili, B., Nouveau, C., Benlatreche, Y.,
Lambertin, M., Yacoubi, N., & Ennasri, M. (2009).
Experimental investigation of the mechanical micro
structural and thermal properties of thin CrAIN layers
deposited by PVD technique for various aluminum
percentages. Physics Procedia, 2(3), 1327-1336.
[10]. Goswami, D. Y. (Ed.). (2004). The CRC Handbook of
Mechanical Engineering. CRC Press.
[11]. Hemanth, J. (2000). Wear characteristics of
austempered chilled ductile iron. Materials & Design, 21(3),
139-148.
[12]. Hock, M., Schäffer, E., Döll, W., & Kleer, G. (2003).
Composite coating materials for the moulding of
diffractive and refractive optical components of inorganic
glasses. Surface and Coatings Technology, 163, 689-694.
[13]. Holmberg, K., & Matthews, A. (2009). Coatings
tribology properties, mechanisms. Tribology and Interface
Engineering Series, 56(1), 576.
[14]. Hones, P., Consiglio, R., Randall, N., & Leacutevy, F.
(2000). Mechanical properties of hard chromium tungsten
nitride coatings. Surface and Coatings Technology, 125(1), 179-184.
[15]. Kalss, W., Reiter, A., Derflinger, V., Gey, C., & Endrino, J.
L. (2006). Modern coatings in high performance cutting
applications. International Journal of Refractory Metals
and Hard Materials, 24(5), 399-404.
[16]. Kaur, M., Singh, H., & Prakash, S. (2011a). Studies on
Role of Detonation-Gun Sprayed WC-Co Coatings to
Combat High Temperature Corrosion of Boiler Steel. Inter. J.
Surf. Eng. Mater. Technol., 1(1), 33-38.
[17]. Kaur, M., Singh, H., & Prakash, S. (2011b). Surface
engineering analysis of detonation-gun sprayed
Cr3C2–NiCr coating under high-temperature oxidation
and oxidation–erosion environments. Surface and
Coatings Technology, 206(2), 530-541.
[18]. Kaur, N., Kumar, M., Sharma, S. K., Kim, D. Y., Kumar, S.,
Chavan, N. M., & et al. (2015). Study of mechanical
properties and high temperature oxidation behavior of a
novel cold-spray Ni-20Cr coating on boiler steels. Applied
Surface Science, 328, 13-25.
[19]. Kim, S., Cockcroft, S. L., Omran, A. M., & Hwang, H.
(2009). Mechanical, wear and heat exposure properties of
compacted graphite cast iron at elevated temperatures.
Journal of Alloys and Compounds, 487(1), 253-257.
[20]. Kleer, G., & Doell, W. (1997). Ceramic multilayer
coatings for glass moulding applications. Surface and
Coatings Technology, 94, 647-651.
[21]. Lembke, M. I., Lewis, D. B., & Münz, W. D. (2000).
Localised oxidation defects in TiAlN/CrN superlattice
structured hard coatings grown by cathodic
arc/unbalanced magnetron deposition on various
substrate materials. Surface and Coatings Technology,
125(1), 263-268.
[22]. Leushin, I. O., & Chistyakov, D. G. (2014). Analysis of
cracking in glass molds made of cast iron. Russian
Metallurgy (Metally), 2014(9), 768-771.
[23]. Liang, B., & Ding, C. (2005). Thermal shock resistances
of nanostructured and conventional zirconia coatings
deposited by atmospheric plasma spraying. Surface and
Coatings Technology, 197(2), 185-192.
[24]. Lin, X., Zeng, Y., Ding, C., & Zhang, P. (2004). Effects of
temperature on tribological properties of nanostructured and conventional Al2O3 –3wt.% TiO2 coatings. Wear, 256(11), 1018-1025.
[25]. Liscano, S., Gil, L., Leon, O. A., Cruz, M., & Staia, M. H.
(2006). Corrosion performance of duplex treatments
based on plasma nitriding and PAPVD TiAlN coating.
Surface and Coatings Technology, 201(7), 4419-4423.
[26]. Ma, K. J., Chien, H. H., Chuan, W. H., Chao, C. L., &
Hwang, K. C. (2008). Design of protective coatings for glass
lens molding. In Key Engineering Materials (Vol. 364, pp.
655-661). Trans Tech Publications.
[27]. Mashloosh, K. M. (2015). Wear Resistance of Different
Types of Cast Iron used in Glass Blow Mould. Wear, 8(03), 01-11.
[28]. Masuda, J., Yan, J., Zhou, T., Kuriyagawa, T., & Fukase,
Y. (2011). Thermally induced atomic diffusion at the
interface between release agent coating and mould
substrate in a glass moulding press. Journal of Physics D:
Applied Physics, 44(21), 215302.
[30]. Mayrhofer, P. H., Tischler, G., & Mitterer, C. (2001).
Microstructure and mechanical/thermal properties of Cr–N
coatings deposited by reactive unbalanced magnetron
sputtering. Surface and Coatings Technology, 142, 78-84.
[31]. Nishiyama, S., Takahashi, E., Iwamoto, Y., Ebe, A.,
Kuratani, N., & Ogata, K. (1996). Boron nitride hard
coatings by ion beam and vapor deposition. Thin Solid
Films, 281, 327-330.
[32]. Prasad, A., & Gupta, D. (2013). Microwave cladding:
Emerging innovative cladding process. In Proc. of Int. Conf.
on Emerging Trends in Engineering and Technology (pp.
506-510).
[33]. Priyantha, N., Jayaweera, P., Sanjurjo, A., Lau, K., Lu,
F., & Krist, K. (2003). Corrosion-resistant metallic coatings for
applications in highly aggressive environments. Surface
and Coatings Technology, 163, 31-36.
[34]. Rieser, D., Spieß, G., & Manns, P. (2008). Investigations
on glass-to-mold sticking in the hot forming process.
Journal of Non-Crystalline Solids, 354(12), 1393-1397.
[35]. Sarhadi, A., Hattel, J. H., & Hansen, H. N. (2014). Evaluation of the viscoelastic behaviour and glass/mould
interface friction coefficient in the wafer based precision
glass moulding. Journal of Materials Processing
Technology, 214(7), 1427-1435.
[36]. Sidhu, B. S., & Prakash, S. (2003). Evaluation of the
corrosion behaviour of plasma-sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900 oC.
Surface and Coatings Technology, 166(1), 89-100.
[37]. Sidhu, T. S., Prakash, S., & Agrawal, R. D. (2006). Hot
corrosion performance of a NiCr coated Ni-based alloy.
Scripta Materialia, 55(2), 179-182.
[38]. Stliner, R. (1990). Properties and Selection of Irons,
Steels and High Performance Alloys. ASM Handbook, Ohio,
USA.
[39]. Tsai, Y. C., Hung, C., & Hung, J. C. (2008). Glass
material model for the forming stage of the glass molding
process. Journal of Materials Processing Technology,
201(1), 751-754.
[40]. Viskanta, R., & Lim, J. M. (2001). Theoretical
investigation of heat transfer in glass forming. Journal of the
American Ceramic Society, 84(10), 2296-2302.
[41]. Wadsworth, I., Smith, I. J., Donohue, L. A., & Münz, W.
D. (1997). Thermal stability and oxidation resistance of
TiAlN/CrN multilayer coatings. Surface and Coatings
Technology, 94, 315-321.
[42]. Weck, M., Winterschladen, M., Pfeifer, T., Doerner, D.,
Brinksmeier, E., Autschbach, L., et al. (2003).
Manufacturing of optical molds using an integrated
simulation and measurement interface. In Proc. of SPIE,
(Vol. 5252, p. 81).
[43]. Yan, J., Oowada, T., Zhou, T., & Kuriyagawa, T. (2009).
Precision machining of microstructures on electrolessplated
NiP surface for molding glass components. Journal
of Materials Processing Technology, 209(10), 4802-4808.
[44]. Zafar, S., & Sharma, A. K. (2016). Abrasive and erosive
wear behaviour of nanometric WC–12Co microwave
clads. Wear, 346, 29-45.
[45]. Zhong, D., Mateeva, E., Dahan, I., Moore, J., Mustoe,
G. W., Ohno, T., et al. (2000). Wettability of NiAl, Ni-Al-N, Ti-BC,
and Ti-B-C-N films by glass at high temperatures. Surface
and Coatings Technology, 133, 8-14.