References
[1]. Al-Alawi, S. M., & Al-Hinai, H. A. (1998). An ANN-based
approach for predicting global radiation in locations with
no direct measurement instrumentation. Renewable
Energy, 14(1-4), 199-204.
[2]. Badosa, J., Haeffelin, M., & Chepfer, H. (2013). Scales of spatial and temporal variation of solar
irradiance on Reunion tropical island. Solar Energy, 88,
42-56.
[3]. Bashir, Z. A., & El-Hawary, M. E. (2009). Applying
wavelets to short-term load forecasting using PSO-based
neural networks. IEEE Transactions on Power Systems,
24(1), 20-27.
[4]. Bi, Y., Zhao, J., & Zhang, D. (2004, November). Power
load forecasting algorithm based on wavelet packet
analysis. In Power System Technology, 2004. Power
Conference 2004. 2004 International Conference on
(Vol. 1, pp. 987-990). IEEE.
[5]. Boland, J. (1995). Time-series analysis of climatic
variables. Solar Energy, 55(5), 377-388.
[6]. Boland, J. (2008). Time series modelling of solar
radiation. Modeling Solar Radiation at the Earth's
Surface, Springer Verlag, 283-312.
[7]. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G.
M. (2015). Time Series Analysis: Forecasting and Control.
John Wiley & Sons.
[8]. Chapa, J. O., & Rao, R. M. (2000). Algorithms for
designing wavelets to match a specified signal. IEEE
Transactions on Signal Processing, 48(12), 3395-3406.
[9]. Dan Foresee, F., & Hagan, M. T. (1997, June). Gauss-
Newton Approximation to Bayesian Learning. In
International Conference on Neural Networks (Vol. 3, pp.
1930-1935).
[10]. Haessig, P., Multon, B., Ahmed, H. B., Lascaud, S., &
Bondon, P. (2015). Energy storage sizing for wind power:
Impact of the autocorrelation of day-ahead forecast
errors. Wind Energy, 18(1), 43-57.
[11]. Hernandez-Torres, D., Bridier, L., David, M., Lauret, P.,
& Ardiale, T. (2015). Technico-economical analysis of a
hybrid wave power-air compression storage system.
Renewable Energy, 74, 708-717.
[12]. Huang, J., Korolkiewicz, M., Agrawal, M., & Boland,
J. (2013). Forecasting solar radiation on an hourly time
scale using a Coupled Auto Regressive and Dynamical
System (CARDS) model. Solar Energy, 87, 136-149.
[13]. Ji, W., & Chee, K. C. (2011). Prediction of hourly solar
radiation using a novel hybrid model of ARMA and TDNN.
Solar Energy, 85(5), 808-817.
[14]. Kaplanis, S. N. (2006). New methodologies to
estimate the hourly global solar radiation: Comparisons
with existing models. Renewable Energy, 31(6), 781-790.
[15]. Kostylev, V., & Pavlovski, A. (2011, October). Solar
power forecasting performance-towards industry
standards. In 1st International Workshop on the Integration
of Solar Power into Power Systems, Aarhus, Denmark.
[16]. Lorenz, E., Hurka, J., Heinemann, D., & Beyer, H. G.
(2009). Irradiance forecasting for the power prediction of
grid-connected photovoltaic systems. IEEE Journal of
Selected Topics in Applied Earth Observations and
Remote Sensing, 2(1), 2-10.
[17]. MacKay, D. J. (1992). Bayesian Interpolation. Neural
Computation, 4(3), 415-447.
[18]. Mao, P. L., & Aggarwal, R. K. (2001). A novel
approach to the classification of the transient
phenomena in power transformers using combined
wavelet transform and neural network. IEEE Transactions
on Power Delivery, 16(4), 654-660.
[19]. Mathiesen, P., & Kleissl, J. (2011). Evaluation of
numerical weather prediction for intra-day solar
forecasting in the continental United States. Solar Energy,
85(5), 967-977.
[20]. Møller, M. F. (1993). A Scaled Conjugate Gradient
algorithm for fast supervised learning. Neural Networks,
6(4), 525-533.
[21]. Pelland, S., Galanis, G., & Kallos, G. (2013). Solar
and photovoltaic forecasting through post-processing of
the Global Environmental Multiscale numerical weather
prediction model. Progress in Photovoltaics: Research
and Applications, 21(3), 284-296.
[22]. Yap, K. S., Lim, C. P., & Abidin, I. Z. (2008). A Hybrid
ART-GRNN Online Learning Neural Network with a ? -
Insensitive Loss Function. IEEE Transactions on Neural
Networks, 19(9), 1641-1646.