References
[1]. Affanni, A., & Chiorboli, G. (2015). Design and
characterization of a real-time, wearable, endosomatic
electrodermal system. Measurement, 75, 111-121.
[3]. Ausburn, L. J., & Ausburn, F. B. (2008). New desktop
virtual reality technology in technical education. imanager's
Journal of Educational Technology, 4(4), 48-61.
[4]. Ausburn, L. J., & Ausburn, F. B. (2010). Spheres of Reality:
A conceptualization of desktop virtual environments in
career and technical education and an implementation
training model. 2010 Career and Technical Education
Research and Professional Development Conference, Las
Vegas, NV.
[5]. Ausburn, L. J., Ausburn, F. B., Dotterer, G., Washington, A., & Kroutter, P. (2013). Simulation and virtual technologies
for workforce learning: Successes from alternative realities.
2013 Career and Technical Education Research and
Professional Development Conference, Las Vegas, NV.
[7]. Ausburn, L. J., Martens, J., Dotterer, G., & Calhoun, P.
(2009). Avatars, pedagogical agents, and virtual
environments: Social learning systems online. i-manager's
Journal of Educational Technology, 5(4), 1-13.
[8]. Baukal, C. E., Ausburn, F. B., and Ausburn, L. J. (2013). A
proposed multimedia cone of abstraction: Updating a
classic instructional design theory. i-manager's Journal of
Educational Technology, 9(4), 15-24.
[9]. Betella, A., Pacheco, D., Zucca, R., Arsiwalla, X. D.,
Omedas, P., Lanatà, A., et al. (2014). Interpreting
psychophysiological states using unobtrusive wearable
sensors in virtual reality, ACHI 2014: The Seventh
International Conference on Advances in Computer-
Human Interactions, 331-336.
[10]. Boucsein, W. (2012). Electrodermal Activity, 2nd ed.
New York: Springer.
[12]. Corrigan, L. J., Peters, C., & Castellano, G. (2013).
Identifying task engagement: Towards personalized
interactions with education robots. In Affective Computing
and Intelligent Interaction (ACII), 2013 Humaine
Association Conference, (pp. 655-658).
[13]. Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The
electrodermal system. In Cacioppo, John T., Tassinary, Louis
G. & Berntson, Gary G. (eds.), The Handbook of
Psychophysiology, 3rd ed. New York: Cambridge University Press.
[14]. Féré, C. (1888). Note sur des modifications de la
résistance électrique sous l'influence des excitations
sensorielles et des émotions. Compte Rendus des Seances
de la Societe de Biologie et de ses Filiales, Paris, 40, 217-
219.
[15]. Harley, J. M., Bouchet, F., Hussain, M. S., Azevedo, R.,
& Calvo, R. (2015). A multi-componential analysis of
emotions during complex learning with an intelligent multiagent
system. Computers in Human Behavior, 48, 615-25.
[17]. Jung, C. G. (1919). Studies in word-association:
Experiments in the diagnosis of psychopathological
conditions carried out at the psychiatric clinic of the
University of Zurich, New York: Moffat, Yard & Company
[18]. Kappas, A., Küster, D., Basedow, C., & Dente, P.
(2013). A validation study of the Affectiva Q sensor in
different social laboratory situations. In 53rd Annual Meeting
of the Society for Psychophysiological Research, Florence,
Italy.
[19]. Kellihan, B., Doty, T. J., Hairston, W. D., Canady, J.,
Whitaker, K. W., Lin, C. T., et al. (2013, July). A real-world
neuroimaging system to evaluate stress. In International
Conference on Augmented Cognition (pp. 316-325).
Springer, Berlin, Heidelberg.
[20]. Kindness, P., Mellish, C., & Masthoff, J. (2013). How
virtual teammate support types affect stress. Proceedings
of the 2013 Humaine Association Conference on Affective
Computing and Intelligent Interaction, IEEE, Geneva,
September 2-5. 2013, 300-305.
[21]. Martens, J. B. (2016). Foraging for spatial information:
Patterns of orientation learning using desktop virtual reality
(Unpublished Doctoral Dissertation, Oklahoma State
University, Stillwater, Oklahoma, USA).
[22]. Neumann, E., & Blanton, R. (1970). The early history of
electrodermal research. Psychophysiology, 6(4), 453-75.
[23]. Nilsson, N., Nordahl, R., Turchet, L., & Serafin, S.
(2012). Audio-haptic simulation of walking on virtual ground
surfaces to enhance realism. In Magnusson, C., Szymczak, D. & Brewster, S. (eds.), Haptic and Audio Interaction
Design: 7th International Conference (Berlin: Springer-
Verlag, 2012), 61-70.
[24]. Nordahl, R., Serafin, S., Nilsson, N. C., & Turchet, L.
(2012, March). Enhancing realism in virtual environments
by simulating the audio-haptic sensation of walking on
ground surfaces. In Virtual Reality Short Papers and Posters
(VRW), 2012 IEEE (pp. 73-74). IEEE.
[25]. Ocasio-De Jesus, V., Kennedy, A., & Whittinghill, D.
(2013). Impact of graphical fidelity on physiological
responses in virtual environments. In Proceeding of the 19th
ACM Symposium on Virtual Reality Software and
Technology, (pp. 73-76).
[27]. Paletta, L., Santner, K., Fritz, G., Hofmann, A., Lodron,
G., Thallinger, G., et al. (2013). A computer vision system
for attention mapping in SLAM based 3D models.
OAG/AAPR Workshop, arXiv preprint arXiv:1305.1163.
[29]. Poh, M. Z., Swenson, N. C., & Picard, R. W. (2010). A
wearable sensor for unobtrusive, long-term assessment of
electrodermal activity. IEEE Transactions on Biomedical
Engineering, 57(5), 1243-52.
[31]. Prokasy, W. F., & Raskin, D. C. (1973). Electrodermal
activity in Psychological Research. New York: Academic
Press.
[32]. Sano, A., & Picard, R. W. (2013). Stress recognition
using wearable sensors and mobile phones. 2013 Humaine Association Conference on Affective Computing
and Intelligent Interaction, Geneva, Sept. 2-5, 2013
[34]. Silveira, F., Eriksson, B., Sheth, A., & Sheppard, A.
(2013, September). Predicting audience responses to
movie content from electro-dermal activity signals. In
Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (pp.
707-716). ACM.
[35]. Slater, M., Usoh M., & Steed, A. (1994). Depth of
presence in virtual environments. Presence: Teleoperators
and Virtual Environments, 3, 130-144.
[36]. Thüs, H., Chatti, M. A., Yalcin, E., Pallasch, C., Kyryliuk,
B., Mageramov, T., et al. (2012). Mobile learning in context.
International Journal of Technology Enhanced Learning,
4(5/6), 332-44.
[37]. Turner, P., & Turner, S. (2006). Place, sense of place,
and presence. Presence: Teleoperators and Virtual
Environments, 15(2), 204-217.
[38]. Venables, P. H., & Christie, M. I. (1973). Mechanisms,
instrumentation, recording techniques, and quantification
of responses. In Prokasy, W. F., & Raskin, D. C. (eds.),
Electrodermal Activity in Psychological Research, New
York: Academic Press.
[39]. Vigouroux, R. (1879). Sur le role de la resistance
electrique des tissues dansl'electro-diagnostic. Comptes
Rendus Societe de Biologie, 31(6), 336-339.
[40]. Weddle, A. B., & Yu, H. (2013). How does audio-haptic
enhancement influence emotional response to mobile
media? 2013 Fifth International Workshop on Quality of
Multimedia Experience, (pp. 158-163).
[41]. Witmer, B. G. & Singer, M. J. (1998). Measuring
presence in virtual environments: A presence
questionnaire. Presence: Teleoperators and Virtual
Environments, 14(3), 298-312.
[42]. Wu, Y., Babu, S. V., Armstrong, R., Bertrand, J. W., Luo,
J., Roy, et al. (2014). Effects of virtual human animation on emotion contagion in simulated inter-personal
experiences. IEEE Transactions on Visualization and
Computer Graphics, 20(4), 626-635.
[43]. Yeykelis, Leo, Cummings, James J., & Reeves, Byron
(2014). Multitasking on a single device: Arousal and the frequency, anticipation, and prediction of switching
between media content on a computer. Journal of
Communication, 64, 167-192.