Modeling of Hexagonal and Octagonal Photonic Crystal Fiber

Aakash Joshi*, Sharad Mohan Shrivastava**, Vikas Sahu***, Anshu****
*,**** PG Scholar, Department of Electronics and Communication Engineering, Shri Shankaracharya Technical Campus, Bhilai, India.
**-*** Assistant Professor, Department of Electronics & Telecommunication Engineering, Shri Shankaracharya Technical Campus, Bhilai, India.
Periodicity:June - August'2017


In this paper, the authors have designed two structures of Photonic crystal fiber. These structures consist of 4 rings of Hexagonal and octagonal air holes. PML and Scattering Boundary condition is applied on these photonic crystal fiber structures. The Finite Element Method of COMSOL Multi Physics is used to design these proposed structures and MATLAB is used to plot the effective refractive index and confinement loss in various cases. It has been observed that the effective refractive index and confinement loss not only varies by change in wavelength, but also by changing the structural parameters of air holes, such as diameter (d) of air holes and pitch (Λ) at 1.55 μm wavelength. The effective area of Hexagonal and Octagonal PCF at 1.55 μm wavelength are 163.45 μm2 and 217.425 μm2 , respectively.


Photonic Crystal Fiber, Finite Element Method, Perfectly Matched Layers, Confinement Loss, Effective Area

How to Cite this Article?

Joshi, A., Shrivastava, S.M., Sahu, V., and Anshu. (2017). Modeling of Hexagonal and Octagonal Photonic Crystal Fiber. i-manager’s Journal on Electronics Engineering, 7(4), 34-40.


[1]. Amir, A., Revathi, S., Inbathini, S. R., & Chandran, A. (2013). Modeling of Circular Photonic Crystal Fiber Structure for High Non-linearity. International Journal of Advanced Electrical and Electronics Engineering (IJAEEE), 2(3), 88-92.
[2]. Bjarklev, A., Riishede, J., Libori, S. B., & Broen, J. (2002). Photonic cr ystal fibres-novel fibres, new applications. In Transparent Optical Networks, 2002. th Proceedings of the 2002 4 International Conference on (Vol. 2, pp. 172-178). IEEE.
[3]. Bouk, A. H., Cucinotta, A., Poli, F., & Selleri, S. (2004). Dispersion properties of square-lattice photonic crystal fibers. Optics Express, 12(5), 941-946.
[4]. Broeng, J., Barkou, S. E., Bjarklev, A., Knight, J. C., Birks, T. A., & Russell, P. S. J. (1998). Highly increased photonic band gaps in silica/air structures. Optics Communications, 156(4), 240-244.
[5]. Chiang, J. S., & Wu, T. L. (2006). Analysis of propagation characteristics for an octagonal Photonic Crystal Fiber (O-PCF). Optics Communications, 258(2), 170-176.
[6]. Ebendorff-Heidepriem, H., Petropoulos, P., Asimakis, S., Finazzi, V., Moore, R. C., Frampton, K., et al. (2004). Bismuth glass holey fibers with high nonlinearity. Optics Express, 12(21), 5082-5087.
[7]. Ehteshami, N., & Sathi, V. (2012). A novel broadband dispersion compensating square-lattice photonic crystal fiber. Optical and Quantum Electronics, 44(6), 323-335.
[8]. Habib, M. S., Habib, M. S., Razzak, S. A., & Hossain, M. A. (2013). Proposal for highly birefringent broadband dispersion compensating octagonal photoniccrystal fiber. Optical Fiber Technology, 19(5), 461-467.
[9]. Habib, M. S., Habib, M. S., Razzak, S. A., Namihira, Y., Hossain, M. A., & Khan, M. G. (2013). Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers. Optik- International Journal for Light and Electron Optics, 124(19), 3851-3855.
[10]. Habib, M. S., Nasim, K. M., Habib, M. S., Hasan, M. I., & Ahmad, R. (2013). Relative dispersion slope matched dispersion compensating highly birefringent spiral microstructure optical fibers using defected core. Optical Engineering, 52(9), 096110.
[11]. Jensen, J. B., Riishede, J., Broengx, J., Lægsgaard, J., Larsen, T. T., Sorensen, T., et al. (2003, October). Photonic crystal fibers: Fundamental properties and applications within sensors. In Sensors, 2003. Proceedings of IEEE (Vol. 1, pp. 269-278). IEEE.
[12]. Kaijage, S. F., Namihira, Y., Hai, N. H., Begum, F., Razzak, S. A., Kinjo, T., et al. (2009). Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Japanese Journal of Applied Physics, 48(5R), 052401.
[13]. Knight, J. C., Birks, T. A., Russell, P. S. J., & Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21(19), 1547-1549.
[14]. Koshiba, M., & Saitoh, K. (2003). Structural dependence of effective area and mode field diameter for holey fibers. Optics Express, 11(15), 1746-1756.
[15]. Li, J., Wang, R., Wang, J., Xu, Z., & Su, Y. (2011, July). Novel large negative dispersion photonic crystal fiber for dispersion compensation. In Mechanic Automation and Control Engineering (MACE), 2011 Second International Conference on (pp. 1443-1446). IEEE.
[16]. Liu, J., Xue, L., Wang, Z., Kai, G., Liu, Y., Zhang, W., & Dong, X. (2006). Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes. IEEE Journal of Quantum Electronics, 42(9), 961-968.
[17]. Liu, Q., Li, S., & Chen, H. (2015). Two kinds of polarization filter based on photonic crystal fiber with nanoscale gold film. IEEE Photonics Journal, 7(1), 1-11.
[18]. Mishra, S. S., & Singh, V. K. (2011). Study of non-linear properties of hollow core photonic crystal fiber. Optik- International Journal for Light and Electron Optics, 122(8), 687-690.
[19]. Razzak, S. M. A., Namihira, Y., Khan, M. G., Anower, M. S., & Hai, N. H. (2006, December). Transmission characteristics of circular ring pcf and Octagonal PCF: A comparison. In Electrical and Computer Engineering, 2006. ICECE'06. International Conference on (pp. 266- 269). IEEE.
[20]. Russell, P., & Dettmer, R. (2001). A neat idea [photonic crystal fibre]. IEEE Review, 47(5), 19-23.
[21]. Saitoh, K., & Koshiba, M. (2002). Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 38(7), 927-933.
[22]. Shen, L. P., Huang, W. P., Chen, G. X., & Jian, S. S. (2003). Design and optimization of photonic crystal fibers for broad-band dispersion compensation. IEEE Photonics Technology Letters, 15(4), 540-542.

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.