References
[1]. Agal, A., Pradeep, & Krishnan, B. (2014). 6T SRAM Cell: Design and Analysis. International Journal of Engineering Research and Applications, 4(3), 574-577.
[2]. Apostolidis, G., Balobas, D., & Konofaos, N. (2016). Design and simulation of 6T SRAM cell architectures in 32nm technology. Journal of Engineering Science and Technology Review, 9(5), 145-149.
[3]. Consoli, E., Alioto, M., Palumbo, G., & Rabaey, J. (2012, February). Conditional push-pull pulsed latches with 726fJ ps energy-delay product in 65 nm CMOS. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International (pp. 482-484). IEEE.
[4]. Gopal, M., Prasad, D. S. S., & Raj, B. (2013). 8T SRAM cell design for dynamic and leakage power reduction. International Journal of Computer Applications, 71(9), 43-48.
[5]. Kakde, S. D., Pokle, P. B., & Dorave, J. (2016). Low Power VLSI design Methodologies & Power Management. International Journal of Research in Advent Technology, 4(4), 277-281.
[6]. Kaur, N., Kaur, L., & Kaur, G. (2015). Design and Performance Analysis of Low Power 6T SRAM using Tanner Tool. International Journal of Emerging Engineering Research and Technology, 3(4), 16-21.
[7]. Nikitha, N., & Mutalik, P. (2016). Front end Design of Shift Registers using Latches. International Research Journal of Engineering and Technology, 3(5) , 578-581.
[8]. Partovi, H., Burd, R., Salim, U., Weber, F., DiGregorio, L., & Draper, D. (1996, February). Flow-through latch and edge-triggered flip-flop hybrid elements. In Solid-State Circuits Conference, 1996. Digest of Technical Papers. 42nd ISSCC., 1996 IEEE International (pp. 138-139). IEEE.
[9]. Sharma, R., Antil, R., & Kumar, K. (2015). Comparitive Study of 6T and 8T SRAM using Tanner Tool. International Journal of Computer Science and Mobile Computing, 4(1), 211-221.
[10]. Stephany, R., Anne, K., Bell, J., Cheney, G., Eno, J., Hoeppner, G., et al. (1998, February). A 200 MHz 32 b 0.5 W CMOS RISC microprocessor. In Solid-State Circuits Conference, 1998. Digest of Technical Papers. 1998 IEEE International (pp. 238-239). IEEE.
[11]. Stojanovic, V., & Oklobdzija, V. G. (1999). Comparative analysis of master-slave latches and flipflops for high-performance and low-power systems. IEEE Journal of Solid-State Circuits, 34(4), 536-548.
[12]. Subudhi, T., & Mehra, R. (2014). Design Analysis of CMOS Voltage Mode SRAM Cell using Different nm Technologies. International Journal of Emerging Technologies and Engineering, 1(3), 76-80.
[13]. Tarkasvar, J., Pachori, K. & Jain, R. (2016). Power and Area Optimization of Pulse Latch Shift Register. International Journal of Engineering Research and Development, 12(6), 41-45.
[14]. Tejaswini, N., & Karunashree, B. (2016). VLSI Design of novel RAM using Pulsed Latch based Shift Registers, International Journal of Professional Engineering Studies, 6(3), 120-124.
[15]. Yadav, S., Malik, N., Gupta, A., & Rajput, S. (2013). Low power SRAM design with reduced read/write time. International Journal of Information and Computation Technology, 3(3), 195-200.
[16]. Yang, B. D. (2015). Low-power and area-efficient shift register using pulsed latches. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(6), 1564-1571.