References
[1]. Aghanoori, N., Mohseni, M., & Masoum, M. A. (2011, November). Fuzzy approach for reactive power control of DFIG-based wind turbines. In Innovative Smart Grid Technologies Asia (ISGT), 2011 IEEE PES (pp. 1-6). IEEE.
[2]. Aktarujjaman, M., Haque, M. E., Muttaqi, K. M., Negnevitsky, M., & Ledwich, G. (2008, July). Control dynamics of a doubly fed induction generator under sub-and super-synchronous modes of operation. In Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE (pp. 1-9). IEEE.
[3]. Åström, K. J., & Hägglund, T. (1995). PID controllers: theory, design, and tuning (Vol. 2). Research Triangle Park, NC: Isa.
[4]. Bhuiyan, F. A., & Yazdani, A. (2010). Reliability assessment of a wind-power system with integrated energy storage. IET Renewable Power Generation, 4(3), 211-220.
[5]. Bragard, M., Soltau, N., Thomas, S., & De Doncker, R. W. (2010). The balance of renewable sources and user demands in grids: Power electronics for modular battery energy storage systems. IEEE Transactions on Power Electronics, 25(12), 3049-3056.
[6]. Cárdenas, R., Peña, R., Pérez, M., Clare, J., Asher, G., & Wheeler, P. (2006). Power smoothing using a flywheel driven by a switched reluctance machine. IEEE Transactions on Industrial Electronics, 53(4), 1086-1093.
[7]. Chwa, D., & Lee, K. B. (2010). Variable structure control of the active and reactive powers for a DFIG in wind turbines. IEEE transactions on Industry Applications, 46(6), 2545-2555.
[8]. Díaz, G. (2012). Optimal primary reserve in DFIGs for frequency support. International Journal of Electrical Power & Energy Systems, 43(1), 1193-1195.
[9]. Engelhardt, S., Erlich, I., Feltes, C., Kretschmann, J., & Shewarega, F. (2011). Reactive power capability of wind turbines based on doubly fed induction generators. IEEE Transactions on Energy Conversion, 26(1), 364-372.
[10]. Fan, L., Yin, H., & Miao, Z. (2011). On active/reactive power modulation of DFIG-based wind generation for interarea oscillation damping. IEEE Transactions on Energy Conversion, 26(2), 513-521.
[11]. Geng, H., & Yang, G. (2009). Robust pitch controller for output power levelling of variable-speed variable-pitch wind turbine generator systems. IET Renewable Power Generation, 3(2), 168-179.
[12]. Geng, H., Liu, C., & Yang, G. (2013). LVRT capability of DFIG-based WECS under asymmetrical grid fault condition. IEEE transactions on Industrial electronics, 60(6), 2495-2509.
[13]. Iwanski, G., & Koczara, W. (2008). DFIG-based power generation system with UPS function for variable-speed applications. IEEE Transactions on Industrial Electronics, 55(8), 3047-3054.
[14]. Kayikci, M., & Milanovic, J. V. (2007). Reactive power control strategies for DFIG-based plants. IEEE Transactions on Energy Conversion, 22(2), 389-396.
[15]. Kazmi, S. M. R., Goto, H., Guo, H. J., & Ichinokura, O. (2011). A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems. IEEE Transactions on Industrial Electronics, 58(1), 29-36.
[16]. Li, S., & Gu, H. (2012). Fuzzy adaptive internal model control schemes for PMSM speed-regulation system. IEEE Transactions on Industrial Informatics, 8(4), 767-779.
[17]. Lin, W. M., & Hong, C. M. (2011). A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems. IEEE transactions on power electronics, 26(2), 473-481.
[18]. Mathiesen, B. V., & Lund, H. (2009). Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. IET Renewable Power Generation, 3(2), 190-204.
[19]. Muljadi, E., & Butterfield, C. P. (2001). Pitch-controlled variable-speed wind turbine generation. IEEE Transactions on Industry Applications, 37(1), 240-246.
[20]. Poitiers, F., Bouaouiche, T., & Machmoum, M. (2009). Advanced control of a doubly-fed induction generator for wind energy conversion. Electric Power Systems Research, 79(7), 1085-1096.
[21]. Qiao, W., Zhou, W., Aller, J. M., & Harley, R. G. (2008). Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG. IEEE transactions on power electronics, 23(3), 1156-1169.
[22]. Sen, P. C., & Ma, K. H. J. (1978). Constant torque operation of induction motors using chopper in rotor circuit. IEEE Transactions on Industry Applications, (5), 408-414.
[23]. Sharma, S., & Singh, B. (2012). Control of permanent magnet synchronous generator-based stand-alone wind energy conversion system. IET Power Electronics, 5(8), 1519-1526.
[24]. Shukla, R. D., & Tripathi, R. K. (2012, March). Low voltage ride through (LVRT) ability of DFIG based wind energy conversion system II. In Engineering and Systems (SCES), 2012 Students Conference on (pp. 1-6). IEEE.
[25]. Takahashi, R., Kinoshita, H., Murata, T., Tamura, J., Sugimasa, M., Komura, A., ... & Ide, K. (2010). Output power smoothing and hydrogen production by using variable speed wind generators. IEEE Transactions on Industrial Electronics, 57(2), 485-493.
[26]. Tapia, G., Tapia, A., & Ostolaza, J. X. (2007). Proportional–integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Transactions on Energy Conversion, 22(2), 488-498.
[27]. Zhi, D., & Xu, L. (2007). Direct power control of DFIG with constant switching frequency and improved transient performance. IEEE Transactions on Energy Conversion, 22(1), 110-118.