Fatigue Behavior of Fiber - Reinforced Polymer Composites - A Review

Shankara D. R.*, Kiran Kumar P.**
* Assistant Professor and Research Scholar, Department of Mechanical Engineering, SJB Institute of Technology, Bengaluru, Karnataka, India.
** Professor, Department of Mechanical Engineering, SJB Institute of Technology, Bengaluru, Karnataka, India.
Periodicity:July - September'2017
DOI : https://doi.org/10.26634/jms.5.2.13660

Abstract

The fiber - reinforced polymer composites are normally exposable to fatigue behavior, fatigue properties, and fatigue failure. Increasing stress ratios can lead to better fatigue performance in fiber - reinforced polymer composites. The images from SEM (Scanning Electron Microscope) expose that under a high level of stress, the critical fiber breaking failure, which is the dominant damage, occurs along with matrix cracking and interfacial debonding. The experimental indication is supported by microscopic assessment at different stages of the fatigue life and fracture surface investigations. This paper reviews the fatigue behavior and characteristics of fiber - reinforced polymer composites. To predict the fatigue life of fiber - reinforced polymer composites not only the effects of a load, but other experimental input variables, such as maximum stress, fiber orientation, and stress ratio were also considered. The output variables were the number of cycles to failure stress ratios and load frequencies which are also reviewed in this paper.

Keywords

Polymer Composites, Fatigue Test, Fatigue Behavior, Fatigue Characteristic.

How to Cite this Article?

Shankara, D. R., and Kumar, P. K. (2017). Fatigue Behavior of Fiber - Reinforced Polymer Composites - A Review. i-manager’s Journal on Material Science, 5(2), 47-53. https://doi.org/10.26634/jms.5.2.13660

References

[1]. Adam, T. J., & Horst, P. (2017). Fatigue damage and fatigue limits of a GFRP angle-ply laminate tested under very high cycle fatigue loading. International Journal of Fatigue, 99, 202-214.
[2]. Akinyede, O., Mohan, R., Kelkar, A., & Sankar, J. (2009). Static and fatigue behavior of epoxy/fiberglass composites hybridized with alumina nanoparticles. Journal of Composite Materials, 43(7), 769-781.
[3]. Albouy, W., Vieille, B., & Taleb, L. (2014). Influence of matrix ductility on the high-temperature fatigue behaviour of quasi-isotropic woven-ply thermoplastic and thermoset laminates. Composites Part A: Applied Science and Manufacturing, 67, 22-36.
[4]. Avanzini, A., Donzella, G., Gallina, D., Pandini, S., & Petrogalli, C. (2013). Fatigue behavior and cyclic damage of peek short fiber reinforced composites. Composites Part B: Engineering, 45(1), 397-406.
[5]. Botelho, E. C., Rezende, M. C., Mayer, S., & Voorwald, H. (2008). Evaluation of fatigue behavior on repaired carbon fiber/epoxy composites. Journal of Materials Science, 43(9), 3166-3172.
[6]. Broutman, L. J., & Gaggar, S. K. (1972). Fatigue behavior of epoxy and polyester resins. International Journal of Polymeric Materials, 1(4), 295-316.
[7]. Cherusseri, J., Pramanik, S., Sowntharya, L., Pandey, D., Kar, K. K., & Sharma, S. D. (2017). Polymer-Based Composite Materials: Characterizations. In Composite Materials (pp. 37-77). Springer Berlin Heidelberg.
[8]. Das, C. K., Nayak, G. C., & Rajasekar, R. (2012). Kevlar Fiber-Reinforced Polymer Composites. Polymer Composites, 1, 209-274.
[9]. de Andrade Silva, F., Mobasher, B., & Toledo Filho, R. D. (2010). Fatigue behavior of sisal fiber reinforced cement composites. Materials Science and Engineering: A, 527(21), 5507-5513.
[10]. Degrieck, J., & Van Paepegem, W. (2001). Fatigue damage modeling of fibre-reinforced composite materials. Applied Mechanics Reviews, 54(4), 279-300.
[11]. Dobah, Y., Bourchak, M., Bezazi, A., Belaadi, A., & Scarpa, F. (2016). Multi-axial mechanical characterization of jute fiber/polyester composite materials. Composites Part B: Engineering, 90, 450-456.
[12]. El-Assal, A. M., & Khashaba, U. A. (2007). Fatigue analysis of unidirectional GFRP composites under combined bending and torsional loads. Composite Structures, 79(4), 599-605.
[13]. Epaarachchi, J. A., & Clausen, P. D. (2003). An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies. Composites Part A: Applied Science and Manufacturing, 34(4), 313-326.
[14]. Gassan, J. (2000). Fatigue behavior of cross-ply glass-fiber epoxy composites including the effect of fiber-matrix interphase. Composite Interfaces, 7(4), 287-299.
[15]. Gassan, J., & Dietz, T. (2003). Interphase characterization of composites under fatigue loadings. Composite Interfaces, 10(2-3), 287-296.
[16]. Jarrah, M. A., Al-Assaf, Y., & Kadi, H. E. (2002). Neurofuzzy modeling of fatigue life prediction of unidirectional glass fiber/epoxy composite laminates. Journal of Composite Materials, 36(6), 685-700.
[17]. Ji, Q., Zhu, P., Lu, J., & Liu, Z. (2016). Study of In-plane Fatigue Failure and Life Prediction of Weave Composites Under Constant and Variable Amplitude Loading. Polymers & Polymer Composites, 24(8), 597.
[18]. Kapidžic, Z., Ansell, H., Schön, J., & Simonsson, K. (2015). Fatigue bearing failure of CFRP composite in biaxially loaded bolted joints at elevated temperature. Composite Structures, 127, 298-307.
[19]. Kawai, M., & Yano, K. (2016). Probabilistic anisomorphic constant fatigue life diagram approach for prediction of P–S–N curves for woven carbon/epoxy laminates at any stress ratio. Composites Part A: Applied Science and Manufacturing, 80, 244-258.
[20]. Li, X., Hallett, S. R., & Wisnom, M. R. (2013). A finite element based statistical model for progressive tensile fibre failure in composite laminates. Composites Part B: Engineering, 45(1), 433-439.
[21]. Li, D. S., Jiang, N., Zhao, C. Q., Jiang, L., & Tan, Y. (2015). Experimental study on the tension fatigue behavior and failure mechanism of 3D multi-axial warp knitted composites. Composites Part B: Engineering, 68, 126-135.
[22]. Mallick, P. K., & Zhou, Y. (2004). Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide-6, 6. International Journal of Fatigue, 26(9), 941-946.
[23]. Manjunatha, C. M., Bojja, R., Jagannathan, N., Kinloch, A. J., & Taylor, A. C. (2013). Enhanced fatigue behavior of a glass fiber reinforced hybrid particles modified epoxy nanocomposite under WISPERX spectrum load sequence. International Journal of Fatigue, 54, 25-31.
[24]. Meng, M., Le, H., Grove, S., & Rizvi, M. J. (2016). Moisture effects on the bending fatigue of laminated composites. Composite Structures, 154, 49-60.
[25]. Mortazavian, S., & Fatemi, A. (2015). Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects. International Journal of Fatigue, 77, 12-27.
[26]. Naderi, M., & Khonsari, M. M. (2013). On the role of damage energy in the fatigue degradation characterization of a composite laminate. Composites Part B: Engineering, 45(1), 528-537.
[27]. Pan, N. (1993). Theoretical determination of the optimal fiber volume fraction and fiber-matrix property compatibility of short fiber composites. Polymer composites, 14(2), 85-93.
[28]. Reis, P. N., Ferreira, J. A., & Richardson, M. O. (2011). Fatigue damage characterization by NDT in polypropylene/glass fibre composites. Applied Composite Materials, 18(5), 409-419.
[29]. Sarfaraz, R., Vassilopoulos, A. P., & Keller, T. (2012). A hybrid S–N formulation for fatigue life modeling of composite materials and structures. Composites Part A: Applied Science and Manufacturing, 43(3), 445-453.
[30]. Seon, G., Makeev, A., Nikishkov, Y., & Lee, E. (2013). Effects of defects on interlaminar tensile fatigue behavior of carbon/epoxy composites. Composites Science and Technology, 89, 194-201.
[31]. Shah, D. U., Schubel, P. J., Clifford, M. J., & Licence, P. (2013). Fatigue life evaluation of aligned plant fibre composites through S–N curves and constant-life diagrams. Composites Science and Technology, 74, 139- 149.
[32]. Vassilopoulos, A. P., Manshadi, B. D., & Keller, T. (2010). Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. International Journal of Fatigue, 32(4), 659-669.
[33]. Zhao, X., Wang, X., Wu, Z., & Zhu, Z. (2016). Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads. International Journal of Fatigue, 88, 58-67.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.