References
[1]. Asharani, K., & Subbalakshmi, S. (2015). Image
Recognition System. International Journal of Advance
Research in Computer Science and Management
Studies, 3(6), 60-64.
[2]. Augustine, D. P. (2014). Leveraging Big Data Analytics
and Hadoop in developing India's healthcare services.
International Journal of Computer Applications, 89(16),
44-50.
[3]. Brett, J. R., & William, E. B. (2004). Vascular Disorder,
Chap 117: Diabetic Retinopathy. Mosby, 877-886.
[4]. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business
intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1-24.
[5]. Cheung, N., Mitchell, P., & Wong, T. Y. (2010). Diabetic
Retinopathy. The Lancet, 376(9735), 124-136.
[6]. Cheung, N., Rogers, S., Couper, D. J., Klein, R.,
Sharrett, A. R., & Wong, T. Y. (2007). Is Diabetic Retinopathy
an independent risk factor for ischemic stroke? Stroke,
38(2), 398-401.
[7]. Cheung, N., Wang, J. J., Klein, R., Couper, D. J.,
Sharrett, A. R., & Wong, T. Y. (2007). Diabetic Retinopathy
and the risk of coronary heart disease. Diabetes Care,
30(7), 1742-1746.
[8]. Cheung, N., Wang, J. J., Rogers, S. L., Brancati, F.,
Klein, R., Sharrett, A. R., et al. (2008). Diabetic
Retinopathy and risk of heart failure. Journal of the
American College of Cardiology, 51(16), 1573-1578.
[9]. Clark, A., Ng, J. Q., Morlet, N., & Semmens, J. B.
(2016). Big Data and Ophthalmic Research. Survey of
Ophthalmology, 61(4), 443-465.
[10]. Ding, J., & Wong, T. Y. (2012). Current epidemiology
of Diabetic Retinopathy and diabetic macular edema.
Current Diabetes Reports, 12(4), 346-354.
[11]. Early Treatment Diabetic Retinopathy Study
Research Group. (1991). Early photo coagulation for
Diabetic Retinopathy: ETDRS report number 9.
Ophthalmology, 98(5), 766-785.
[12]. Erbas, T., Ertas, M., Yucel, A., Keskinaslan, A.,
Senocak, M., & TURNEP Study Group. (2011). Prevalence
of peripheral neuropathy and painful peripheral
neuropathy in Turkish diabetic patients. Journal of Clinical
Neurophysiology, 28(1), 51-55.
[13]. Gandhi, M., & Dhanasekaran, R. (2015). An
Automatic Grading System of Severity Level for Diabetic
Retinopathy using CNN Classifier. ARPN Journal of
Engineering and Applied Sciences, 10(13), 5631-5636.
[14]. Hanifa, S. M. (2016). Non-proliferative Diabetes
Retinopathy Images Classification Task in Healthcare.
i-manager's Journal on Pattern Recognition, 3(2), 7-16.
[15]. King, H., Aubert, R. E., & Herman, W. H. (1998).
Global burden of diabetes, 1995-2025: prevalence,
numerical estimates, and projections. Diabetes Care, 21(9), 1414-1431.
[16]. LeCaire, T. J., Palta, M., Klein, R., Klein, B. E., &
Cruickshanks, K. J. (2013). Assessing progress in
Retinopathy outcomes in Type 1 diabetes. Diabetes
Care, 36(3), 631-637.
[17]. Mahajan, H. D., & Padvi, M. V. (2013). Health Profile
of Diabetic Patients in an Urban Slum of Mumbai, India.
Innovative Journal of Medical and Health Science, 3(3),
102-109.
[18]. Mahesh, K. K. (2013). A Survey on Automated
Techniques for Retinal Disease Identification in Diabetic
Retinopathy. International Journal of Advancements in
Research & Technology, 2(5), 199-216.
[19]. Mitry, D., Peto, T., Hayat, S., Morgan, J. E., Khaw, K. T.,
& Foster, P. J. (2013). Crowd sourcing as a novel technique
for retinal fundus photography classification: Analysis of
Images in the EPIC Norfolk Cohort on behalf of the UK Bio
bank Eye and Vision Consortium. PloSOne, 8(8), 1-7.
[20]. Murthy, G. V. S., Gupta, S. K., Bachani, D., Jose, R., &
John, N. (2005). Current estimates of blindness in India.
British Journal of Ophthalmology, 89(3), 257-260.
[21]. Namperumalsamy, P., Kim, R., Kaliaperumal, K.,
Sekar, A., Karthika, A., & Nirmalan, P. K. (2004). A pilot
study on awareness of diabetic retinopathy among nonmedical
persons in South India. The challenge for eye
care programmes in the region. Indian Journal of
Ophthalmology, 52(3), 247-251.
[22]. Ramachandran, A., Jali, M. V., Mohan, V.,
Snehalatha, C., & Viswanathan, M. (1988). High
prevalence of diabetes in an urban population in south
India. BMJ, 297(6648), 587-590.
[23]. Ramachandran, A., Snehalatha, C., Dharmaraj, D.,
& Viswanathan, M. (1992). Prevalence of glucose
intolerance in Asian Indians: Urban-rural difference and
significance of upper body adiposity. Diabetes Care, 15(10), 1348-1355.
[24]. Raman, R., Gupta, A., Kulothungan, V., & Sharma, T.
(2012). Prevalence and risk factors of diabetic
retinopathy in subjects with suboptimal glycemic, blood
pressure and lipid control. Sankara Nethralaya Diabetic
Retinopathy Epidemiology and Molecular Genetic Study
(SN-DREAMS, Report 33). Current Eye Research, 37(6),
513-523.
[25]. Ramasamy, K., Raman, R., & Tandon, M. (2013).
Current state of care for Diabetic Retinopathy in India.
Current Diabetes Reports, 13(4), 460-468.
[26]. Rani, P. K., Raman, R., Sharma, V., Mahuli, S. V.,
Tarigopala, A., Sudhir, R. R., et al. (2007). Analysis of a
comprehensive diabetic retinopathy screening model
for rural and urban diabetics in developing countries.
British Journal of Ophthalmology, 91(11), 1425-1429.
[27]. Roychowdhury, S., Koozekanani, D. D., & Parhi, K. K.
(2014). DREAM: Diabetic Retinopathy Analysis using
Machine Learning. IEEE Journal of Biomedical and Health
Informatics, 18(5), 1717-1728.
[28]. Shah, N. H., & Tenenbaum, J. D. (2012). FOCUS on
translational bioinformatics: The coming age of datadriven
medicine: Translational bioinformatics' next
frontier. Journal of the American Medical Informatics
Association, 19(e1), e2-e4.
[29]. Sujatha, V., Devi, S. P., Kiran, S. V., & Manivannan, S.
(2016). Bigdata Analytics on Diabetic Retinopathy Study
(DRS) on Real-time Data Set Identifying Survival Time and
Length of Stay. Procedia Computer Science, 87, 227-
232.
[30]. Walter, T., Klein, J. C., Massin, P., & Erginay, A. (2002).
A contribution of image processing to the diagnosis of
Diabetic Retinopathy-detection of exudates in color
fundus images of the human retina. IEEE Transactions on
Medical Imaging, 21(10), 1236-1243.