Combined LMMSE and Structure Tensor Diffusion Filter for Bias Removal in MRI Data

C. Anjanappa*, H. S. Sheshadri**
* Assistant Professor, Department of Electronics and Communication Engineering, The National Institute of Engineering, Karnataka, India.
** Professor, Department of Electronics and Communication Engineering, PES College of Engineering, Karnataka, India
Periodicity:March - May'2017
DOI : https://doi.org/10.26634/jpr.4.1.13641

Abstract

MRI (Magnetic Resonance Imaging) images suffer from noise due to long acquisition time and high resolution is needed for post processing the noisy image for further analysis like segmentation and registration, which is required for the clinical practice for better analysis of disease detection. In MRI, the noise from the acquisition device follows the complex noise distribution. For better analysis of MRI data, the complex noisy data follows the magnitude data which obeys Rician Distribution. So the magnitude data need to be denoised rather than the complex data in which, it suffers from phase artifacts. Unfortunately, the presence of Rician noise in these images affect edges and fine details, which limit the contrast resolution and make diagnostic more difficult. The key idea from using diffusion tensor is to adapt the flow diffusion towards the local orientation by applying anisotropic diffusion along the coherent structure direction of interesting features in the image, which enhances the quality and improves the Signal-to-Noise Ratio (SNR) and edge preservation of anatomical details. In this paper, the filtering parameter is automatically chosen from the estimated standard deviation of noise using standard Linear Minimum Mean Square Error (LMMSE) method in which, it improves the convergence rate of diffusion along with preservation of anatomical details which is required for clinical diagnosis. Also, matrix extension of the scalar diffusion filter, is proposed which automatically adapts to the local structure of the image and the level of noise along with the coherent structure direction of interesting features in the image, which improves the SNR and edge preservation of anatomical details.

In order to illustrate the effective performance of the algorithm, some experimental results are presented on synthetic and clinical images. The proposed filter shows better preservation of edges and efficient noise reduction at both low SNR and high SNR levels.

Keywords

MRI (Magnetic Resonance Imaging), US (Ultrasound Imaging), PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error), ADF (Anisotropic Diffusion), TDF (Tensor Diffusion), DTI (Diffusion Tensor Images)

How to Cite this Article?

Anjanappa, C., and Sheshadri, H. S. (2017). Analysis of EEG Physiological Signal for the Detection of Epileptic Seizure. i-manager’s Journal on Pattern Recognition, 4(1), 11-22. https://doi.org/10.26634/jpr.4.1.13641

References

[1]. Aja-Fernández, S., & Alberola-López, C. (2006). On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing, 15(9), 2694-2701.
[2]. Aja-Fernández, S., & Krissian, K. (2008, September). An unbiased Non-Local Means scheme for DWI filtering. In Proceedings of the Medical Image Computing and Computer Assisted Inter vention: Workshop on Computational Diffusion MRI (pp. 277-284).
[3]. Aja-Fernández, S., Alberola-López, C., & Westin, C. F. (2008a). Noise and signal estimation in magnitude MRI and Rician Distributed Images: A LMMSE Approach. IEEE Transactions on Image Processing, 17(8), 1383-1398.
[4]. Aja-Fernández, S., Niethammer, M., Kubicki, M., Shenton, M. E., & Westin, C. F. (2008b). Restoration of DWI data using a Rician LMMSE estimator. IEEE Transactions on Medical Imaging, 27(10), 1389-1403.
[5]. Basu, S., Fletcher, T., & Whitaker, R. (2006). Rician noise removal in diffusion tensor MRI. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006,1, 117-125.
[6]. Bhujle, H. V., & Chaudhuri, S. (2013). Laplacian based non-local means denoising of MR images with Rician noise. Magnetic Resonance Imaging, 31(9), 1599-1610.
[7]. Coupé, P., Manjón, J. V., Gedamu, E., Arnold, D., Robles, M., & Collins, D. L. (2010). Robust Rician noise estimation for MR images. Medical Image Analysis, 14(4), 483-493.
[8]. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008). An optimized blockwise nonlocal means denoising filter for 3-D Magnetic Resonance Images. IEEE Transactions on Medical Imaging, 27(4), 425-441.
[9]. Golshan, H. M., & Hasanzadeh, R. P. (2013). A modified Rician LMMSE estimator for the restoration of magnitude MR images. Optik-International Journal for Light and Electron Optics, 124(16), 2387-2392.
[10]. Golshan, H. M., Hasanzadeh, R. P., & Yousefzadeh, S. C. (2013). An MRI denoising method using image data redundancy and local SNR estimation. Magnetic Resonance Imaging, 31(7), 1206-1217.
[11]. Henkelman, R. M. (1985). Measurement of signal intensities in the presence of noise in MR images. Medical Physics, 12(2), 232-233.
[12]. Krissian, K., & Aja-Fernández, S. (2009). Noise-driven anisotropic diffusion filtering of MRI. IEEE Transactions on Image Processing, 18(10), 2265-2274.
[13]. Krissian, K., Westin, C. F., Kikinis, R., & Vosburgh, K. G. (2007). Oriented speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 16(5), 1412-1424.
[14]. Manjón, J. V., Carbonell-Caballero, J., Lull, J. J., García-Martí, G., Martí-Bonmatí, L., & Robles, M. (2008). MRI denoising using non-local means. Medical Image Analysis, 12(4), 514-523.
[15]. Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L., & Robles, M. (2010). Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1), 192-203.
[16]. McGraw, T., Vemuri, B. C., Chen, Y., Rao, M., & Mareci, T. (2004). DT-MRI denoising and neuronal fiber tracking. Medical Image Analysis, 8(2), 95-111.
[17]. Mohan, J., Krishnaveni, V., & Guo, Y. (2014). A survey on the magnetic resonance image denoising methods. Biomedical Signal Processing and Control, 9, 56-69.
[18]. Nowak, R. D. (1999). Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing, 8(10), 1408-1419.
[19]. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629-639.
[20]. Pizurica, A., Philips, W., Lemahieu, I., & Acheroy, M. (2003). A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Medical Imaging, 22(3), 323-331.
[21]. Sijbers, J., & Den Dekker, A. J. (2004). Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magnetic Resonance in Medicine, 51(3), 586-594.
[22]. Sijbers, J., den Dekker, A. J., Scheunders, P., & Van Dyck, D. (1998). Maximum-likelihood estimation of Rician distribution parameters. IEEE Transactions on Medical Imaging, 17(3), 357-361.
[23]. Sijbers, J., Den Dekker, A. J., Van Audekerke, J., Verhoye, M., & Van Dyck, D. (1998). Estimation of the noise in magnitude MR images. Magnetic Resonance Imaging, 16(1), 87-90.
[24]. Sijbers, J., Poot, D., den Dekker, A. J., & Pintjens, W. (2007). Automatic estimation of the noise variance from the histogram of a Magnetic Resonance Image. Physics in Medicine and Biology, 52(5), 1335-1348.
[25]. Tristán-Vega, A., & Aja-Fernández, S. (2008, September). Joint LMMSE estimation of DWI data for DTI processing. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 27-34). Springer, Berlin, Heidelberg.
[26]. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600-612.
[27]. Weickert, J. (1998). Anisotropic Diffusion in Image Processing (Vol. 1, pp. 59-60). Stuttgart: Teubner.
[28]. Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S. P., & Barillot, C. (2008, September). Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 171-179). Springer Berlin Heidelberg.
[29]. Yu, Y., & Acton, S. T. (2002). Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 11(11), 1260-1270.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.