References
[1]. Aja-Fernández, S., & Alberola-López, C. (2006). On
the estimation of the coefficient of variation for
anisotropic diffusion speckle filtering. IEEE Transactions on
Image Processing, 15(9), 2694-2701.
[2]. Aja-Fernández, S., & Krissian, K. (2008, September).
An unbiased Non-Local Means scheme for DWI filtering. In
Proceedings of the Medical Image Computing and
Computer Assisted Inter vention: Workshop on
Computational Diffusion MRI (pp. 277-284).
[3]. Aja-Fernández, S., Alberola-López, C., & Westin, C. F.
(2008a). Noise and signal estimation in magnitude MRI
and Rician Distributed Images: A LMMSE Approach. IEEE
Transactions on Image Processing, 17(8), 1383-1398.
[4]. Aja-Fernández, S., Niethammer, M., Kubicki, M.,
Shenton, M. E., & Westin, C. F. (2008b). Restoration of DWI
data using a Rician LMMSE estimator. IEEE Transactions on
Medical Imaging, 27(10), 1389-1403.
[5]. Basu, S., Fletcher, T., & Whitaker, R. (2006). Rician
noise removal in diffusion tensor MRI. Medical Image
Computing and Computer-Assisted Intervention-MICCAI
2006,1, 117-125.
[6]. Bhujle, H. V., & Chaudhuri, S. (2013). Laplacian based
non-local means denoising of MR images with Rician
noise. Magnetic Resonance Imaging, 31(9), 1599-1610.
[7]. Coupé, P., Manjón, J. V., Gedamu, E., Arnold, D.,
Robles, M., & Collins, D. L. (2010). Robust Rician noise
estimation for MR images. Medical Image Analysis, 14(4),
483-493.
[8]. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., &
Barillot, C. (2008). An optimized blockwise nonlocal
means denoising filter for 3-D Magnetic Resonance
Images. IEEE Transactions on Medical Imaging, 27(4),
425-441.
[9]. Golshan, H. M., & Hasanzadeh, R. P. (2013). A
modified Rician LMMSE estimator for the restoration of
magnitude MR images. Optik-International Journal for
Light and Electron Optics, 124(16), 2387-2392.
[10]. Golshan, H. M., Hasanzadeh, R. P., & Yousefzadeh, S.
C. (2013). An MRI denoising method using image data
redundancy and local SNR estimation. Magnetic
Resonance Imaging, 31(7), 1206-1217.
[11]. Henkelman, R. M. (1985). Measurement of signal
intensities in the presence of noise in MR images. Medical
Physics, 12(2), 232-233.
[12]. Krissian, K., & Aja-Fernández, S. (2009). Noise-driven
anisotropic diffusion filtering of MRI. IEEE Transactions on
Image Processing, 18(10), 2265-2274.
[13]. Krissian, K., Westin, C. F., Kikinis, R., & Vosburgh, K. G.
(2007). Oriented speckle reducing anisotropic diffusion.
IEEE Transactions on Image Processing, 16(5), 1412-1424.
[14]. Manjón, J. V., Carbonell-Caballero, J., Lull, J. J.,
García-Martí, G., Martí-Bonmatí, L., & Robles, M. (2008).
MRI denoising using non-local means. Medical Image
Analysis, 12(4), 514-523.
[15]. Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D.
L., & Robles, M. (2010). Adaptive non-local means
denoising of MR images with spatially varying noise levels.
Journal of Magnetic Resonance Imaging, 31(1), 192-203.
[16]. McGraw, T., Vemuri, B. C., Chen, Y., Rao, M., &
Mareci, T. (2004). DT-MRI denoising and neuronal fiber
tracking. Medical Image Analysis, 8(2), 95-111.
[17]. Mohan, J., Krishnaveni, V., & Guo, Y. (2014). A survey
on the magnetic resonance image denoising methods.
Biomedical Signal Processing and Control, 9, 56-69.
[18]. Nowak, R. D. (1999). Wavelet-based Rician noise
removal for magnetic resonance imaging. IEEE
Transactions on Image Processing, 8(10), 1408-1419.
[19]. Perona, P., & Malik, J. (1990). Scale-space and edge
detection using anisotropic diffusion. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(7), 629-639.
[20]. Pizurica, A., Philips, W., Lemahieu, I., & Acheroy, M.
(2003). A versatile wavelet domain noise filtration
technique for medical imaging. IEEE Transactions on
Medical Imaging, 22(3), 323-331.
[21]. Sijbers, J., & Den Dekker, A. J. (2004). Maximum
likelihood estimation of signal amplitude and noise
variance from MR data. Magnetic Resonance in Medicine, 51(3), 586-594.
[22]. Sijbers, J., den Dekker, A. J., Scheunders, P., & Van
Dyck, D. (1998). Maximum-likelihood estimation of Rician
distribution parameters. IEEE Transactions on Medical
Imaging, 17(3), 357-361.
[23]. Sijbers, J., Den Dekker, A. J., Van Audekerke, J.,
Verhoye, M., & Van Dyck, D. (1998). Estimation of the
noise in magnitude MR images. Magnetic Resonance
Imaging, 16(1), 87-90.
[24]. Sijbers, J., Poot, D., den Dekker, A. J., & Pintjens, W.
(2007). Automatic estimation of the noise variance from
the histogram of a Magnetic Resonance Image. Physics
in Medicine and Biology, 52(5), 1335-1348.
[25]. Tristán-Vega, A., & Aja-Fernández, S. (2008,
September). Joint LMMSE estimation of DWI data for DTI
processing. In International Conference on Medical
Image Computing and Computer-Assisted Intervention
(pp. 27-34). Springer, Berlin, Heidelberg.
[26]. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
(2004). Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image
Processing, 13(4), 600-612.
[27]. Weickert, J. (1998). Anisotropic Diffusion in Image
Processing (Vol. 1, pp. 59-60). Stuttgart: Teubner.
[28]. Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S.
P., & Barillot, C. (2008, September). Rician noise removal
by non-local means filtering for low signal-to-noise ratio
MRI: applications to DT-MRI. In International Conference
on Medical Image Computing and Computer-Assisted
Intervention (pp. 171-179). Springer Berlin Heidelberg.
[29]. Yu, Y., & Acton, S. T. (2002). Speckle reducing
anisotropic diffusion. IEEE Transactions on Image
Processing, 11(11), 1260-1270.