References
[1]. Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C.,
David, P., & Elger, C. E. (2001). Indications of nonlinear
deterministic and finite-dimensional structures in time
series of brain electrical activity: Dependence on
recording region and brain state. Physical Review E, 64(6),
061907:1-8.
[2]. Avoli, M. (2004). Pierre Gloor (1923-2003): An
Appreciation. Epilepsia, 45(7), 882-886.
[3]. Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G.
(2015). Part 1: Simple definition and calculation of
accuracy, sensitivity, and specificity. Emergency, 3(2), 48-
49.
[4]. Brazier, M. A. (1961). A History of the Electrical Activity
of the Brain: The first half-century. Orford, England:
Macmillan.
[5]. Burrus, C. S., Gopinath, R. A., & Guo, H. (1998). Introduction to Wavelets and Wavelet Transforms: A
primer. Prentice Hall, Upper Sadde River.
[6]. D'Alessandro, M., Esteller, R., Vachtsevanos, G.,
Hinson, A., Echauz, J., & Litt, B. (2003). Epileptic seizure
prediction using hybrid feature selection over multiple
intracranial EEG electrode contacts: A report of four
patients. IEEE Transactions on Biomedical Engineering,
50(5), 603-615.
[7]. Durka, P. J. (2004). Adaptive time-frequency
parametrization of epileptic spikes. Physical Review E,
69(5), 051914.
[8]. Fu, K., Qu, J., Chai, Y., & Dong, Y. (2014). Classification
of seizure based on the time-frequency image of EEG
signals using HHT and SVM. Biomedical Signal Processing
and Control, 13, 15-22.
[9]. Jahankhani, P., & Kodogiannis, V. (2008). Intelligent
decision support system for classification of EEG signals
using wavelet coefficients. In Data Mining in Medical and
Biological Research. InTech.
[10]. Kumari, P., & Vaish, A. (2015). Brainwave based user
identification system: A pilot study in robotics environment.
Robotics and Autonomous Systems, 65, 15-23.
[11]. Marchant, B. P. (2003). Time–frequency analysis for
biosystems engineering. Biosystems Engineering, 85(3),
261-281.
[12]. Peng, H., Long, F., & Ding, C. (2005). Feature
selection based on mutual information criteria of max- dependency, max-relevance, and min-redundancy. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 27(8), 1226-1238.
[13]. Robert, C., Gaudy, J. F., & Limoge, A. (2002).
Electroencephalogram processing using Neural
networks. Clinical Neurophysiology, 113(5), 694-701.
[14]. Sanei, S., & Chambers, J. A. (2013). EEG Signal
Processing. John Wiley & Sons.
[15]. Sastry, P. (2003). An introduction to support vector
machines. Computing and Information Sciences:
Recent Trends, 53-85.
[16]. Singh, M., & Kaur, S. (2012). Frequency band
separation for epilepsy detection using EEG. International
Journal of Information Technology and Knowledge
Management, 6(1), 11-13.
[17]. Subasi, A. (2005). Epileptic seizure detection using
dynamic wavelet network. Expert Systems with
Applications, 29(2), 343-355.
[18]. Subasi, A. (2007). EEG signal classification using
wavelet feature extraction and a mixture of expert model.
Expert Systems with Applications, 32(4), 1084-1093.
[19]. Subasi, A., & Gursoy, M. I. (2010). EEG signal
classification using PCA, ICA, LDA and support vector
machines. Expert Systems with Applications, 37(12),
8659-8666.
[20]. Theodoridis, S., & Koutroumbas, K., (2009). Pattern
Recognition, 4 Ed. Elsevier - Academic Press