References
[1]. Aiazzi, B., Baronti, S., & Selva, M. (2007). Improving
component substitution pansharpening through
multivariate regression of MS + Pan data. IEEE
Transactions on Geoscience and Remote Sensing,
45(10), 3230-3239.
[2]. Akgun, T., Altunbasak, Y., & Mersereau, R. M. (2005).
Super-resolution reconstruction of hyperspectral images.
IEEE Transactions on Image Processing, 14(11), 1860-
1875.
[4]. Chavez, P., Sides, S. C., & Anderson, J. A. (1991).
Comparison of three different methods to merge
multiresolution and multispectral data- Landsat TM and
SPOT panchromatic. Photogrammetric Engineering and
Remote Sensing, 57(3), 295-303.
[5]. Do, M. N., & Vetterli, M. (2005). The contourlet
transform: an efficient directional multiresolution image
representation. IEEE Transactions on Image Processing,
14(12), 2091-2106.
[6]. Gu, Y., Zhang, Y., & Zhang, J. (2008). Integration of
spatial–spectral information for resolution enhancement
in hyperspectral images. IEEE Transactions on
Geoscience and Remote Sensing, 46(5), 1347-1358.
[7]. Jung, F. (2004). Detecting building changes from
multitemporal aerial stereopairs. ISPRS Journal of
Photogrammetry and Remote Sensing, 58(3), 187-201.
[8]. Laben, C. A., & Brower, B. V. (2000). Process for
enhancing the Spatial Resolution of Multispectral
Imagery using Pan-Sharpening. U.S. Patent No.
6,011,875. Washington, DC: U.S. Patent and Trademark
Office.
[9]. Loncan, L., de Almeida, L. B., Bioucas-Dias, J. M.,
Briottet, X., Chanussot, J., Dobigeon, N., et al. (2015).
Hyperspectral pansharpening: A review. IEEE Geoscience
and Remote Sensing Magazine, 3(3), 27-46.
[10]. Mallat, S. G. (1989). A theory for multiresolution signal
decomposition: the wavelet representation. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 11(7), 674-693.
[11]. Matikainen, L., Hyyppä, J., Ahokas, E., Markelin, L.,
& Kaartinen, H. (2010). Automatic detection of buildings
and changes in buildings for updating of maps. Remote
Sensing, 2(5), 1217-1248.
[12]. Petrovic, V. (2007). Subjective tests for image fusion
evaluation and objective metric validation. Information
Fusion, 8(2), 208-216.
[13]. Simões, M., Bioucas-Dias, J., Almeida, L. B., &
Chanussot, J. (2015). A convex formulation for
hyperspectral image superresolution via subspacebased
regularization. IEEE Transactions on Geoscience
and Remote Sensing, 53(6), 3373-3388.
[14]. Starck, J. L., Fadili, J., & Murtagh, F. (2007). The
undecimated wavelet decomposition and its
reconstruction. IEEE Transactions on Image Processing,
16(2), 297-309.
[15]. Zhao, Y., Yang, J., Zhang, Q., Song, L., Cheng, Y., &
Pan, Q. (2011). Hyperspectral imagery super-resolution
by sparse representation and spectral regularization.
EURASIP Journal on Advances in Signal Processing,
2011(1), 87.