References
[1]. Abdullah, M. A., Chiang, L. & Nadeem, M. (2009).
Comparative evaluation of adsorption kinetics and
isotherms of a natural product removal by Amberlite
polymeric adsorbents. Chemical Engineering Journal,
146(3), 370-376.
[2]. Amarasinghe, B. M. W. P. K. & Williams, R. A. (2007). Tea
waste as a low cost adsorbent for the removal of Cu and
Pb from wastewater. Chemical Engineering Journal,
132(1-3), 299-309.
[3]. ASTM E478-08 (2017). Standard Test Methods for
Chemical Analysis of Copper Alloys, ASTM International,
West Conshohocken, PA, 2017, www.astm.org
[4]. Aydin, H., Bulut, Y., & Yerlikaya, C. (2008). Removal of
copper (II) from aqueous solution by adsorption onto lowcost
adsorbents. Journal of Environmental Management,
87(1), 37-45.
[5]. Azizian, S. (2004). Kinetic models of sorption: A
theoretical analysis. Journal of Colloid and Interface
Science, 276(1), 47-52.
[6]. Dada, A. O., Olalekan, A. P., Olatunya, A. M., Dada, &Langmuir, O. (2012). Freundlich, Temkin, and Dubinin–
Radushkevich Isotherms studies of equilibrium Sorption of
2+ Zn unto phosphoric acid modified rice husk. J. Appl.
Chem., 3(1), 38-45.
[7]. Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2006).
Biosorption of copper (II) and lead (II) from aqueous
solutions by nonliving green algae Cladophora
fascicularis: Equilibrium, Kinetics and Environmental
Effects. Adsorption, 12(4), 267-277.
[8]. Dutta B.K. (2009). Principles of Mass Transfer and
Separation Processes. Wiley Online Library.
[9]. Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H.,
Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic
studies in adsorption of heavy metals using biosorbent: A
summary of recent studies. Journal of Hazardous
Materials, 162(2), 616-645.
[10]. Krishnan, K. A., Sreejalekshmi, K. G., Vimexen, V., &
Dev, V. V. (2016). Evaluation of adsorption properties of
sulphurised activated carbon for the effective and
economically viable removal of Zn (II) from aqueous
solutions. Ecotoxicology and Environmental Safety, 124,
418-425.
[11]. Malkoc E. & Nuhoglu Y. (2007). Potential of tea
factory waste for chromium (VI) adsorption from aqueous
solutions: Thermodynamic and kinetic studies. Sep. Purif.
Technol., 54, 291-298.
[12]. Mishra, S. R. & Chandra, R. (2017). Kinetics and
isotherm studies for the adsorption of metal ions onto two
soil types. Environmental Technology and Innovation, 7(1),
87-101.
[13]. Sastry, S. V. A. R. & Rao, B. S. (2016). Studies on
adsorption of Cu (II) using Spent Tea Extract (STE) from
Industrial wastewater. i-manager's Journal of Future
Engineering & Technology, 11(3), 1-7.
[14]. Treybal R.E. (1980). Mass Transfer Operations, 3
Edition. McGraw-Hill International Editions.
i-