References
[1]. Bourgin, F., Testud, G., Heilbronn, B., & Verseille, J.
(1993). Present practices and trends on the French power
system to prevent voltage collapse. IEEE Transactions on Power Systems, 8(3), 778-788.
[2]. Chiang, H. D., Flueck, A. J., Shah, K. S., & Balu, N.
(1995). CPFLOW: A practical tool for tracing power system
steady-state stationary behavior due to load and
generation variations. IEEE Transactions on Power
Systems, 10(2), 623-634.
[3]. DeMarco, C. L. (1986). A Large Deviations Model for
Voltage Collapse in Electrical Power Systems. In Proc. of
IEEE International Symposium on Circuits and Systems.
[4]. Ghiocel, S. G., & Chow, J. H. (2014). A power flow
method using a new bus type for computing steady-state
voltage stability margins. IEEE Transactions on Power
Systems, 29(2), 958-965.
[5]. Iba, K., Suzuki, H., Egawa, M., & Watanabe, T. (1991).
Calculation of critical loading condition with nose curve
using homotopy continuation method. IEEE Transactions
on Power Systems, 6(2), 584-593.
[6]. Kessel, P., & Glavitsch, H. (1986). Estimating the
voltage stability of a power system. IEEE Transactions on
Power Delivery, 1(3), 346-354.
[7]. Kothari, D. P., & Nagrath, I. J. (2011). Modern Power
System Analysis. Tata McGraw-Hill Edition.
[8]. Powell, L. (2004). Power System Load Flow Analysis.
Tata McGraw Hill Edition.
[9]. Saadat, H., (2002). Power System Analysis. Tata
McGraw-Hill Edition.
[10]. Stott, B. (1974). Review of load-flow calculation
methods. Proceedings of the IEEE, 62(7), 916-929.
[11]. Taylor, C. W. (1994). Power System Voltage Stability.
McGraw-Hill.