References
[1]. Chen, Y., Wen, A., & Shang, L. (2010). Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators. Optics Communications, 283(24), 4933-4941.
[2]. Chen, H., Ning, T., Li, J., Pei, L., Zhang, C., & Yuan, J. (2015). Study on filterless frequency-tupling millimeter-wave generator with tunable optical carrier to sideband ratio. Optics Communications, 350, 128-134.
[3]. Gliese, U., Norskov, S., & Nielsen, T. N. (1996). Chromatic dispersion in fiber-optic microwave and millimeter-wave links. IEEE Transactions on microwave theory and techniques, 44(10), 1716-1724.
[4]. Goldberg, L., Taylor, H. F., Weller, J. F., & Bloom, D. M. (1983). Microwave signal generation with injection-locked laser diodes. Electronics Letters, 19(13), 491-493.
[5]. Járó, G., & Berceli, T. (2003). A new high-efficiency optical-microwave mixing approach. Journal of lightwave technology, 21(12), 3078.
[6]. Kondo, J., Aoki, K., Iwata, Y., Hamajima, A., Ejiri, T., Mitomi, O., & Minakata, M. (2005, October). 76-GHz Millimeter-Wave Generation Using MZ LiNbO 3 Modulator with Drive Voltage of 7 V pp and 19 GHz Signal Input. In Microwave Photonics, 2005. MWP 2005. International Topical Meeting on (pp. 1-4). IEEE.
[7]. Li, W., & Yao, J. (2010). Microwave generation based on optical domain microwave frequency octupling. IEEE Photonics Technology Letters, 22(1), 24-26.
[8]. Lin, C. T., Shih, P. T., Jiang, W. J., Chen, J. J., Peng, P. C., & Chi, S. (2009). A continuously tunable and filterless optical millimeter-wave generation via frequency octupling. Optics express, 17(22), 19749-19756.
[9]. Mohamed, M., Zhang, X., Hraimel, B., & Wu, K. (2008). Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems. Optics express, 16(14), 10786-10802.
[10]. Qi, X., Liu, J., Zhang, X., & Xie, L. (2010). Fiber dispersion and nonlinearity influences on transmissions of AM and FM data modulation signals in radio-over-fiber system. IEEE Journal of Quantum Electronics, 46(8), 1170-1177.
[11]. Yu, J., Gu, J., Liu, X., Jia, Z., & Chang, G. K. (2005). Seamless integration of an 8/spl times/2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM. IEEE Photonics Technology Letters, 17(9), 1986-1988.
[12]. Yu, J., Jia, Z., Wang, T., & Chang, G. K. (2007). Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation. IEEE Photonics Technology Letters, 19(19), 1499-1501.
[13]. Yu, J., Huang, M. F., Jia, Z., Wang, T., & Chang, G. K. (2008). A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal. IEEE Photonics Technology Letters, 20(7), 478-480.
[14]. Zhu, Z., Zhao, S., Yao, Z., Tan, Q., Li, Y., Chu, X., & Zhang, X. (2012). Optical millimeter-wave signal generation by frequency quadrupling using one dual-drive Mach–Zehnder modulator to overcome chromatic dispersion. Optics Communications, 285(13), 3021-3026.
[15]. Zhu, Z., Zhao, S., Li, Y., Chu, X., Wang, X., & Zhao, G. (2013). A radio-over-fiber system with frequency 12-tupling optical millimeter-wave generation to overcome chromatic dispersion. IEEE Journal of Quantum Electronics, 49(11), 919-922.