References
[1]. Alatas, B. (2012). A novel chemistry based
metaheuristic optimization method for mining of
classification rules. Expert Systems with Applications,
39(12), 11080-11088.
[2]. Bilal, M., Oyedele, L. O., Akinade, O. O., Ajayi, S. O.,
Alaka, H. A., Owolabi, H. A., et al. (2016). Big data
architecture for construction waste analytics (CWA): A
conceptual framework. Journal of Building Engineering, 6, 144-156.
[3]. Chen, Y., Crespi, N., Ortiz, A. M., & Shu, L. (2017).
Reality mining: A prediction algorithm for disease
dynamics based on mobile big data. Information
Sciences, 379, 82-93.
[4]. Chen, Y., Li, F., & Fan, J. (2015). Mining association
rules in big data with NGEP. Cluster Computing, 18(2), 577-
585.
[5]. Cheng, C. W., Chanani, N., Venugopalan, J., Maher,
K., & Wang, M. D. (2013). icuARM-An ICU clinical decision
support system using association rule mining. IEEE Journal
of Translational Engineering in Health and Medicine, 1,
4400110-4400110.
[6]. Das, S., & Kalita, H. K. (2016). Semantic Model for
Web-Based Big Data using Ontology and Fuzzy Rule
Mining. In Proceedings of First International Conference
on Information and Communication Technology for
Intelligent Systems: Volume 2 (pp. 431-438). Springer
International Publishing.
[7]. De Ketelaere, B., Hubert, M., & Schmitt, E. (2015).
Overview of PCA-based statistical process monitoring
methods for time-dependent, high-dimensional data.
Journal of Quality Technology, 47, 318-335.
[8]. Farid, D. M., Al-Mamun, M. A., Manderick, B., &
Nowe, A. (2016). An adaptive rule-based classifier for
mining big biological data. Expert Systems with
Applications, 64, 305-316.
[9]. Gupta, M., & George, J. F. (2016). Toward the
development of a big data analytics capability.
Information & Management, 53(8), 1049-1064.
[10]. Han, H., Cao, Z., Gu, B., & Ren, N. (2010). PCA-SVMbased
automated fault detection and diagnosis (AFDD)
for vapor-compression refrigeration systems. HVAC&R
Research, 16(3), 295-313.
[11]. Kim, H. H., & Swanson, N. R. (2016). Mining big data
using parsimonious factor, machine learning, variable
selection and shrinkage methods. International Journal of
Forecasting.
[12]. Lai, J., Li, Y., Deng, R. H., Weng, J., Guan, C., & Yan,
Q. (2014). Towards semantically secure outsourcing of association rule mining on categorical data. Information
Sciences, 267, 267-286.
[13]. Lee, J. S., & Lee, K. B. (2014). An open-switch fault
detection method and tolerance controls based on SVM
in a grid-connected T-type rectifier with unity power factor.
IEEE Transactions on Industrial Electronics, 61(12), 7092-
7104.
[14]. Li, Y., Thomas, M. A., & Osei-Bryson, K. M. (2016). A
snail shell process model for knowledge discovery via
data analytics. Decision Support Systems, 91, 1-12.
[15]. Lokers, R., Knapen, R., Janssen, S., van Randen, Y., &
Jansen, J. (2016). Analysis of Big Data technologies for use
in agro-environmental science. Environmental Modelling
& Software, 84, 494-504.
[16]. Ltifi, H., Benmohamed, E., Kolski, C., & Ayed, M. B.
(2016). Enhanced visual data mining process for dynamic
decision-making. Knowledge-Based Systems, 112, 166-
181.
[17]. Luna, J. M., Romero, J. R., & Ventura, S. (2013).
Grammar-based multi-objective algorithms for mining
association rules. Data & Knowledge Engineering, 86, 19-
37.
[18]. Malhi, A., & Gao, R. X. (2004). PCA-based feature
selection scheme for machine defect classification. IEEE
Transactions on Instrumentation and Measurement,
53(6), 1517-1525.
[19]. Maqbool, O., Babri, H. A., Karim, A., & Sarwar, M.
(2005). Metarule-guided association rule mining for
program understanding. IEE Proceedings-Software,
152(6), 281-296.
[20]. Misra, M., Yue, H. H., Qin, S. J., & Ling, C. (2002).
Multivariate process monitoring and fault diagnosis by
multi-scale PCA. Computers & Chemical Engineering,
26(9), 1281-1293.
[21]. Rodger, J. A. (2015). Discovery of medical Big Data
analytics: improving the prediction of traumatic brain
injury survival rates by data mining Patient Informatics
Processing Software Hybrid Hadoop Hive. Informatics in Medicine Unlocked, 1, 17-26.
[22]. Shaha, S. H., Sayeed, Z., Anoushiravani, A. A., El-
Othmani, M. M., & Saleh, K. J. (2016). Big data, big
problems: Incorporating mission, values, and culture in
provider affiliations. Orthopedic Clinics of North America,
47(4), 725-732.
[23]. Sheng, G., Hou, H., Jiang, X., & Chen, Y. (2016). A
novel association rule mining method of big data for
power transformers state parameters based on
probabilistic graph model. IEEE Transactions on Smart
Grid.
[24]. Tian, F., Lan, T., Chao, K. M., Godwin, N., Zheng, Q.,
Shah, N., & Zhang, F. (2016). Mining suspicious tax evasion
groups in big data. IEEE Transactions on Knowledge and
Data Engineering, 28(10), 2651-2664.
[25]. Tsai, C. F., Lin, W. C., & Ke, S. W. (2016). Big data
mining with parallel computing: A comparison of
distributed and MapReduce methodologies. Journal of
Systems and Software, 122, 83-92.
[26]. ur Rehman, M. H., Chang, V., Batool, A., & Wah, T. Y.
(2016). Big data reduction framework for value creation in
sustainable enterprises. International Journal of
Information Management, 36(6), 917-928.
[27]. Wang, Y., & Hajli, N. (2017). Exploring the path to big
data analytics success in healthcare. Journal of Business
Research, 70, 287-299.
[28]. Weichselbraun, A., Gindl, S., & Scharl, A. (2014).
Enriching semantic knowledge bases for opinion mining in
big data applications. Knowledge-based systems, 69, 78-
85.
[29]. Yang, H., & Fong, S. (2015). Countering the conceptdrift
problems in big data by an incrementally optimized
stream mining model. Journal of Systems and Software,
102, 158-166.
[30]. Zhang, Y., Ren, S., Liu, Y., & Si, S. (2017). A big data
analytics architecture for cleaner manufacturing and
maintenance processes of complex products. Journal of
Cleaner Production, 142, 626-641.