Simulation of Heterogeneous Few Mode Multi-Core Fiber for Capacity Enhancement

Anshu*, Sharad Mohan Shrivastava**, Vikas Sahu***
* PG Scholar, Department of Electronics and Communication Engineering, Shri Shankaracharya Technical Campus, Bhilai, India.
**-*** Assistant Professor, Department of Electronics and Telecommunication Engineering, Shri Shankaracharya Technical Campus, Bhilai, India.
Periodicity:March - May'2017
DOI : https://doi.org/10.26634/jele.7.3.13563

Abstract

This paper aims to make understand the fundamentals and recent advancement in Multi-core Fiber Technology using Space Division Multiplexing. Few mode multi-core fiber (FM-MCF) that enable Space Division Multiplexing (SDM) have greater potential to improve the transmission capacity compared to (SSMF) Single Spatial Mode Fiber. The concept of Hetero geneous Few Mode Multi-core Fibers has paved its way in optical communication system replacing Homogeneous Few Mode Multi-core Fibers which were previously opted. In this paper, the authors have modeled MCF of different geometries with different specific parameters. The uncoupled multi-core fibers (MCFs) which can utilize multiple cores are arranged in a fiber as spatial transmission channels and then are used for the SDM transmission. Design of different structures with different number of cores are also demonstrated. Here, in this paper, the authors use COMSOL Multiphysics (5.2) for carrying out required simulations and MATLAB is used for generation of various proper graphs and field plots.

Keywords

SDM (Space Division Multiplexing), MCF (Multi-core Fiber), FMF (Few Mode Fiber), DMD (Differential Mode Delay), IC-XT (Inter-core Crosstalk)

How to Cite this Article?

Anshu, Shrivastava, S.M., Sahu, V. (2017). Simulation of Heterogeneous Few Mode Multi-Core Fiber for Capacity Enhancement. i-manager's Journal on Electronics Engineering, 7(3), 36-46. https://doi.org/10.26634/jele.7.3.13563

References

[1]. Igarashi, K., Souma, D., Wakayama, Y., Takeshima, K., Kawaguchi, Y., Tsuritani, T., Morita, I., et al. (2015, March). 114 space-division-multiplexed transmission over 9.8-km Weakly-Coupled-6-Mode Uncoupled-19-Core Fibers. In Optical Fiber Communication Conference (pp. Th5C-4). Optical Society of America.
[2]. Matsuo, S., Takenaga, K., Arakawa, Y., Sasaki, Y., Taniagwa, S., Saitoh, K., & Koshiba, M. (2011). Largeeffective- area ten-core fiber with cladding diameter of about 200 µm. Optics Letters, 36(23), 4626-4628.
[3]. Mizuno, T., Takara, H., Sano, A., & Miyamoto, Y. (2015, October). High capacity dense SDM transmission using multi-core few-mode fiber. In Photonics Conference (IPC), 2015 (pp. 259-260). IEEE.
[4]. Puttnam, B. J., Luís, R. S., Klaus, W., Sakaguchi, J., Mendinueta, J. M. D., Awaji, Y., ... & Marciante, J. (2015, September). 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. In Optical Communication (ECOC), 2015 European Conference on (pp. 1-3). IEEE.
[5]. Ryf, R., Chen, H., Fontaine, N. K., Velazquez-Benitez, A. M., Antonio-Lopez, J., Jin, C., Huang, B., et al. (2015, September). 10-mode mode-multiplexed transmission over 125-km single-span multimode fiber. In Optical Communication (ECOC), 2015 European Conference on (pp. 1-3). IEEE.
[6]. Ryf, R., Fontaine, N. K., Guan, B., Essiambre, R. J., Randel, S., Gnauck, A. H., Chandrasekhar, S., et al. (2014, September). 1705-km transmission over coupledcore fibre supporting 6 spatial modes. In Optical Communication (ECOC), 2014 European Conference on (pp. 1-3). IEEE.
[7]. Ryf, R., Fontaine, N. K., Montoliu, M., Randel, S., Chang, S. H., Chen, H., Chandrasekhar, S., et al., (2014, March). Space-division multiplexed transmission over 3× 3 coupled-core multicore fiber. In Optical Fiber Communications Conference and Exhibition (OFC), 2014 (pp. 1-3). IEEE.
[8]. Saitoh, K., & Matsuo, S. (2013). Multicore fibers for large capacity transmission. Nanophotonics, 2(5-6), 441- 454.
[9]. Saitoh, K., & Matsuo, S. (2016). Multicore fiber technology. Journal of Lightwave Technology, 34(1), 55- 66.
[10]. Sakaguchi, J., Klaus, W., Mendinueta, J. M. D., Puttnam, B. J., Luís, R. S., Awaji, Y., Wada, N., et al. (2016). Large spatial channel (36-core× 3 mode) heterogeneous few-mode multicore fiber. Journal of Lightwave Technology, 34(1), 93-103.
[11]. Sakaguchi, J., Klaus, W., Mendinueta, J. M. D., Puttnam, B. J., Luís, R. S., Awaji, Y., & Wada, N. (2015, October). Large-scale, heterogeneous, few-mode multicore fiber technologies with over 100 spatial channels. In Photonics Conference (IPC), 2015 (pp. 645-646). IEEE.
[12]. Sakaguchi, J., Klaus, W., Mendinueta, J. M., Puttnam, B. J., Luis, R. S., Awaji, Y., Wada, N., (2015, March). Realizing a 36-core, 3-mode fiber with 108 spatial channels. In Optical Fiber Communications Conference and Exhibition (OFC), 2015 (pp. 1-3). IEEE.
[13]. Sasaki, Y., Amma, Y., Takenaga, K., Matsuo, S., Saitoh, K., & Koshiba, M. (2015). Few-Mode Multicore Fiber With 36 Spatial Modes (Three Modes (LP , LP , LP ) 01 11a 11b × 12 Cores). Journal of Lightwave Technology, 33(5), 964- 970.
[14]. Shibahara, K., Lee, D., Kobayashi, T., Mizuno, T., Takara, H., Sano, A., Kawakami, H., et al. (2016). Dense SDM (12-Core 3-Mode) Transmission over 527 km with 33.2-ns Mode-Dispersion Employing Low-Complexity Parallel MIMO Frequency-Domain Equalization. Journal of Lightwave Technology, 34(1), 196-204.
[15]. Shibahara, K., Mizuno, T., Takara, H., Sano, A., Kawakami, H., Lee, D., Miyamoto, Y., et al. (2015). Dense SDM (12-core× 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization. In 2015 Optical Fiber Communications Conference and Exhibition (OFC).
[16]. Shieh, W., Bao, H., & Tang, Y. (2008). Coherent optical OFDM: Theory and design. Optics Express, 16(2), 841-859.
[17]. Soma, D., Igarashi, K., Wakayama, Y., Takeshima, K., Kawaguchi, Y., Yoshikane, N., Suritani, T., et al. (2015, September). 2.05 Peta-bit/s super-nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band. In Optical Communication (ECOC), 2015 European Conference on (pp. 1-3). IEEE.
[18]. Takara, H., Mizuno, T., Kawakami, H., Miyamoto, Y., Masuda, H., Kitamura, K., Ono, H., et al. (2014, September). 120.7-Tb/s (7 SDM/180 WDM/95.8 Gb/s) MCFROPA un epeatered transmission of PDM-32QAM channels over 204 km. In Optical Communication (ECOC), 2014 European Conference on (pp. 1-3). IEEE.
[19]. Takenaga, K., Tanigawa, S., Guan, N., Matsuo, S., Saitoh, K., & Koshiba, M. (2010, March). Reduction of crosstalk by quasi-homogeneous solid multi-core fiber. In Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC) (pp. 1-3). IEEE.
[20]. Takeshima, K., Tsuritani, T., Tsuchida, Y., Maeda, K., Watanabe, K., Sasa, T., Imamura, K., et al. (2015, March). 51.1-Tbit/s MCF transmission over 2,520 km using cladding pumped 7-core EDFAs. In Optical Fiber Communication Conference (pp. W3G-1). Optical Society of America.
[21]. Van Uden, R. G. H., Correa, R. A., Lopez, E. A., Huijskens, F. M., Xia, C., Li, G., Schülzgen, A., et al. (2014). Ultra-high-density spatial division multiplexing with a fewmode multicore fibre. Nature Photonics, 8(11), 865-870.
[22]. Ye, F., Saitoh, K., Takara, H., Asif, R., & Morioka, T. (2015, March). High-count multi-core fibers for spacedivision multiplexing with propagation-direction interleaving. In Optical Fiber Communication Conference (pp. Th4C-3). Optical Society of America.
[23]. Ye, F., Tu, J., Saitoh, K., Takenaga, K., Matsuo, S., Takara, H., & Morioka, T. (2016). Wavelengthdependence of inter-core crosstalk in homogeneous multi-core fibers. IEEE Photonics Technology Letters, 28(1), 27-30.
[24]. Yoshida, M., Beppu, S., Kasai, K., Hirooka, T., & Nakazawa, M. (2015). 1024 QAM, 7-core (60 Gbit/sx 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz. Optics Express, 23(16), 20760-20766.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.