References
[1]. Araújo, W. C., Lins, H. W., D'Assunção, A. G., &
Medeiros, J. L. (2014). A bioinspired hybrid optimization
algorithm for designing broadband frequency selective
surfaces. Microwave and Optical Technology Letters,
56(2), 329-333.
[2]. Baena, J. D., Jelinek, L., Marques, R., Mock, J. J.,
Gollub, J., & Smith, D. R. (2007). Isotropic frequency
selective surfaces made of cubic resonators. Applied
Physics Letters, 91(19), 191105.
[3]. Brito, D. B., d'Assuncao, A. G., Maniçoba, R. H., &
Begaud, X. (2013). Metamaterial inspired Fabry–Pérot
antenna with cascaded frequency selective surfaces.
Microwave and Optical Technology Letters, 55(5), 981-
985.
[4]. Chen, C. C. (1970). Transmission through a
conducting screen perforated periodically with
apertures. IEEE Transactions on Microwave Theory and
Techniques, 18(9), 627-632.
[5]. Chen, C. C. (1973). Transmission of microwave
through perforated flat plates of finite thickness. IEEE
Transactions on Microwave Theory and Techniques, 21(1),
1-6.
[6]. Cruz, R. M., Silva, P. H. D. F., & D'Assuncao, A. G. (2009,
June). Synthesis of crossed dipole frequency selective
surfaces using genetic algorithms and artificial neural
networks. In Neural Networks, 2009. IJCNN 2009.
International Joint Conference on (pp. 627-633). IEEE.
[7]. Cwik, T. H. O. M. A. S. A., & Mittra, R. (1987). Scattering
from a periodic array of free-standing arbitrarily shaped
per fectly conducting or resistive patches. IEEE
Transactions on Antennas and Propagation, 35(11), 1226-
1234
[8]. Da Silva, M. R., Nóbrega, C. D. L., Silva, P. D. F., &
D'Assunção, A. G. (2013). Dual-polarized band-stop FSS
spatial filters using vicsek fractal geometry. Microwave and Optical Technology Letters, 55(1), 31-34.
[9]. Deb, K. (2001). Multi-objective Optimization using
Evolutionary Algorithms (Vol. 16). John Wiley & Sons.
[10]. Dickie, R., Cahill, R., Gamble, H. S., Fusco, V. F.,
Grant, N., & Rea, S. P. (2006, November). Dual polarised
sub-mm wave frequency selective beamsplitter. In
Antennas and Propagation, 2006. EuCAP 2006. First
European Conference on (pp. 1-7). IEEE.
[11]. Grounds, P. W., & Webb, K. J. (1991). Numerical
analysis of finite frequency selective surfaces with
rectangular patches of various aspect ratios. IEEE
Transactions on Antennas and Propagation, 39(5), 569-
575.
[12]. Huang, J., Wu, T. K., & Lee, S. W. (1994). Tri-band
frequency selective surface with circular ring elements.
IEEE Transactions on Antennas and Propagation, 42(2),
166-175.
[13]. Kennedy, J., & Eberhart, R. (1995). Particle Swarm
Optimization. IEEE International Conference on Neural
Networks, Perth: IEEE, 19951.
[14]. Kiani, G. I., & Aldhaheri, R. W. (2014, July). Wide
band FSS for increased thermal and communication
efficiency in smart buildings. In Antennas and
Propagation Society International Symposium (APSURSI),
2014 IEEE (pp. 2064-2065). IEEE.
[15]. Mittra, R., Chan, C. H., & Cwik, T. (1988). Techniques
for analyzing frequency selective surfaces-a review.
Proceedings of the IEEE, 76(12), 1593-1615.
[16]. Mittra, R., Hall, R., & Tsao, C. H. (1984). Spectraldomain
analysis of circular patch frequency selective
surfaces. IEEE Transactions on Antennas and Propagation,
32(5), 533-536.
[17]. Munk, B. A. (2000). Frequency Selective Surfaces:
Theory and Design (Vol. 29). New York: John Wiley.
[18]. Narayan, S., & Jha, R. M. (2015). Electromagnetic
Techniques and Design Strategies for FSS Structure
Applications [Antenna Applications Corner]. IEEE
Antennas and Propagation Magazine, 57(5), 135-158.
[19]. Narayan, S., Prasad, K., Nair, R. U., & Jha, R. M.
(2012). A novel EM analysis of double-layered thick FSS based on MM-GSM technique for radome applications.
Progress in Electromagnetics Research Letters, 28, 53-62.
[20]. Panda, M., Nandi, S., & Sarkar, P. P. (2015). A
comparative study of performance of different backpropagation
neural network methods for prediction of
resonant frequency of a slot-loaded double-layer
frequency-selective surface. Indian Journal of Physics,
89(12), 1283-1286.
[21]. Robinson, J., & Rahmat-Samii, Y. (2004). Particle
Swarm Optimization in electromagnetics. IEEE
Transactions on Antennas and Propagation, 52(2), 397-
407.
[22]. Sarkar, P. P., Sarkar, D., Das, S., Sarkar, S., &
Chowdhury, S. K. (2001). Experimental investigation of the
frequency-selective property of an array of dual-tuned
printed dipoles. Microwave and Optical Technology
Letters, 31(3), 189-190.
[23]. Sarkar, P. P., Bhattacharjee, R., Das, S., Sarkar, S.,
Chowdhury, S. K. (2001). Experimental Investigation on
the Frequency Selective Property of an array of printed
dipoles. Proceedings of National Conference on
Microwaves, Antennas & Propagation held at Jaipur
(pp.115-116).
[24]. Schimert, T. R., Brouns, A. J., Chan, C. H., & Mittra, R.
(1991). Investigation of millimeter-wave scattering from
frequency selective surfaces. IEEE Transactions on
Microwave Theory and Techniques, 39(2), 315-322.
[25]. Sedighizadeh, D., & Masehian, E. (2009). Particle
s w a rm o p t imi z a t i o n me t h o d s, t a x o n omy a n d
applications. International Journal of Computer Theory
and Engineering, 1(5), 486.
[26]. Silva, P. H. D. F., dos Santos, A. F., Cruz, R., &
D'Assunção, A. G. (2012). Dual-band bandstop
frequency selective surfaces with gosper prefractal
elements. Microwave and Optical Technology Letters,
54(3), 771-775.
[27]. Tsao, C. H., & Mittra, R. (1982). A spectral-iteration
approach for analyzing scattering from frequency
selective surfaces. IEEE Transactions on Antennas and
Propagation, 30(2), 303-308.
[28]. Wang, D., Che, W., Chang, Y., Chin, K. S., & Chow, Y.L. (2013). A low-profile frequency selective surface with
controllable triband characteristics. IEEE Antennas and
Wireless Propagation Letters, 12, 468-471.
[29]. Wu, T. K., Woo, K., & Lee, S. W. (1992, June). Multi-ring
element FSS for multi-band applications. In Antennas and Propagation Society International Symposium, 1992. APS.
1992 Digest. Held in Conjuction with: URSI Radio
Science Meeting and Nuclear EMP Meeting., IEEE (pp.
1775-1778). IEEE.