References
[1]. Alvarado, F. L. (1978). Penalty factors from Newton's
method. IEEE Transactions on Power Apparatus and
Systems, 6, 2031-2040.
[2]. Banerjee, S., Maity, D., & Chanda, C. K. (2015).
Teaching learning based optimization for economic load
dispatch problem considering valve point loading effect.
International Journal of Electrical Power & Energy
Systems, 73, 456-464.
[3]. Basu, M. (2015). Modified particle swarm optimization
for nonconvex economic dispatch problems.
International Journal of Electrical Power & Energy
Systems, 69, 304-312.
[4]. Christie, R. (1993). Power Systems Test Case Archive:
30 Bus Power Flow Test Case. Retrieved from
http://www.ee.washington.edu/research/pstca/pf30/pg_
tca30bus.htm (accessed 04-Mar-2013).
[5]. Coelho, L. D. S., Bora, T. C., & Mariani, V. C. (2014).
Differential evolution based on truncated Lévy-type flights
and population diversity measure to solve economic load
dispatch problems. International Journal of Electrical
Power and Energy Systems, 57(1), 178-188.
[6]. Duman, S., Güvenç, U., Sönmez, Y., & Yörükeren, N.
(2012). Optimal power flow using gravitational search
algorithm. Energy Conversion and Management, 59, 86-
95.
[7]. Eberhart, R. C., & Shi, Y. (1998, March). Comparison
between genetic algorithms and particle swarm
optimization. In International Conference on Evolutionary
Programming (pp. 611-616). Springer, Berlin, Heidelberg.
[8]. Elsayed, W. T., & El-Saadany, E. F. (2015). A fully
decentralized approach for solving the economic
dispatch problem. IEEE Transactions on Power Systems,
30(4), 2179-2189.
[9]. Hazarika, D., & Bordoloi, P. K. (1991, March). Modified
loss coefficients in the determination of optimum
generation scheduling. In IEE Proceedings C (Generation,
Transmission and Distribution) (Vol. 138, No. 2, pp. 166-
172). IET Digital Library.
[10]. Jang, G. S., Hur, D., Park, J. K., & Lee, S. H. (2005). A
modified power flow analysis to remove a slack bus with a
sense of economic load dispatch. Electric Power Systems
Research, 73(2), 137-142.
[11]. Jiang, A., & Ertem, S. (1995). Polynomial loss models
for economic dispatch and error estimation. IEEE
Transactions on Power Systems, 10(3), 1546-1552.
[12]. Kumari, M. S., & Maheswarapu, S. (2010). Enhanced
genetic algorithm based computation technique for
multi-objective optimal power flow solution. International
Journal of Electrical Power & Energy Systems, 32(6), 736-
742.
[13]. Moein, S., & Logeswaran, R. (2014). KGMO: A swarm
optimization algorithm based on the kinetic energy of gas
molecules. Information Sciences, 275, 127-144.
[14]. Niknam, T., Narimani, M. R., Aghaei, J., &
Azizipanah-Abarghooee, R. (2012). Improved particle
swarm optimisation for multi-objective optimal power flow
considering the cost, loss, emission and voltage stability
index. IET Generation, Transmission & Distribution, 6(6),
515-527.
[15]. Niknam, T., Narimani, M. R., Jabbari, M., &
Malekpour, A. R. (2011). A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy,
36(11), 6420-6432.
[16]. Okamura, M., O-ura, Y., Hayashi, S., Uemura, K., &
Ishiguro, F. (1975). A new power flow model and solution
method?Including load and generator characteristics
and effects of system control devices. IEEE Transactions
on Power Apparatus and Systems, 94(3), 1042-1050.
[17]. Park, Y. M., Lee, J. H., & Newton, A. (1993). Raphson
load flow considering frequency characteristics, Korean
Inst. Electrical Eng, 42, 85-93.
[18]. Power Systems Test Case Archive. Retrieved from
https://www2.ee.washington.edu/research/pstca/pf14/p
g_tca14bus.htm
[19]. Sayah, S., & Zehar, K. (2008). Modified differential
evolution algorithm for optimal power flow with nonsmooth
cost functions. Energy Conversion and
Management, 49(11), 3036-3042.
[20]. Shin, J. R., & Yim, H. S. (1993, October). An extended
approach for NR load flow with power loss correction
method. In TENCON'93 Proceedings. Computer,
Communication, Control and Power Engineering. 1993
IEEE Region 10 Conference on (Vol. 5, pp. 402-405). IEEE.
[21]. Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K.
(2003). Evolutionary programming techniques for
economic load dispatch. IEEE Transactions on
Evolutionary Computation, 7(1), 83-94.
[22]. Subbaraj, P., & Rajnarayanan, P. N. (2009). Optimal
reactive power dispatch using self-adaptive real coded
genetic algorithm. Electric Power Systems Research,
79(2), 374-381.
[23]. Zhu, Y., Wang, J., & Qu, B. (2014). Multi-objective
economic emission dispatch considering wind power
using evolutionary algorithm based on decomposition.
International Journal of Electrical Power & Energy
Systems, 63, 434-445.