References
[1]. M. Ammar, Bouaziz, S. Alimi, and A.M. Abraham,
(2013). “Hybrid harmony search algorithm for global
optimization”. IEEE international World Congress on Nature
and Biologically Inspired Computing (NaBIC), ISBN:
9781479914142, pp. 69 75.
[2]. A. Antoniou, (1993). “Digital Filters: Analysis, Design and
nd Applications”. 2 ed.McGraw Hill.
[3]. Z. Cui, L. Gao, H. Ouyang, and H. Li, (2013). “Hybrid
differential evolution harmony search algorithm for
numerical optimization problems”. In International
conference on Control and Decision Conference (CCDC),
ISBN: 978-1-4673-5533-9, pp. 2930 – 2933.
[4]. X.Z. Gao, K. Zenger, and X. Wang, (2012). “A novel
Harmony Search method with dual memory”. IEEE
International Conference on Systems, Man, and
Cybernetics (SMC), ISBN: 978-1-4673-1712-2, pp. 177 –183.
[5]. T. Gonsalves, and A. Egashira, (2013). “Parallel Swarms
Oriented Particle Swarm Optimization”. Applied
Computational Intelligence and Soft Computing, Article ID
756719, pp. 7, Volume 2013.
[6]. C. Jing, W. Yamin, and L. Junqing, (2012). “A hybrid
harmony search algorithm combined with differential
evolution for global optimization problems”. In IEEE
International Conference on Control Conference (CCC),
ISSN: 19341768, pp. 2509-2513.
[7]. H. Li, and L. Li, (2007). “A Novel Hybrid Particle Swarm
Optimization Algorithm Combined with Harmony Search
for High Dimensional Optimization Problems”. International
Conference on Intelligent Pervasive Computing, ISBN:
9780769530062, pp. 94-97.
[8]. X. Changming, and Y. Lin, (2011). “A new improved
harmony search algorithm for continuous optimization
problems”. In International Conference on Computer
Science and Network Technology (ICCSNT), Vol. 2, pp. 686
689.
[9]. S. Prasad, S. Ghoshal, R. Kar, and D. Mandal, (2011).
“Optimal linear phase finite impulse response band pass
filter design using craziness based particle swarm
optimization algorithm”. Journal of Shanghai Jiaotong
University (Science), ISSN: 1007-1172 Vol. 16, No. 6, pp.
696-703.
[10]. S. Mandal, R. Kar, D. Mandal, and S.P. Ghoshal,
(2011). “Swarm Intelligence based Optimal Linear Phase
FIR High Pass Filter Design using Particle Swarm Optimization
with Constriction Factor and Inertia Weight Approach”.
World Academy of Science, Engineering and Technology,
Vol. 5.
[11]. S. Mukherjee, R. Kar, D. Mandal, and S. Mondal,
(2011). “Linear phase low pass FIR filter design using
Improved Particle Swarm Optimization”. IEEE Student
Conference on Research and Development (SCOReD),
ISBN: 978-1-4673-0099-52011, pp. 358 – 363.
[12]. Amanjeet Panghal, Nitin Mittal, Devender Pal Singh,
R.S. Chauhan, and Sandeep K. Arya, (2010). “Comparison
of Various Optimization Techniques For Design Fir Digital
Filters”. NCCI 2010 - National Conference on Computational Instrumentation CSIO Chandigarh, pp. 19-
20.
[13]. T.W. Parks, and J.H. McClellan, (1972). Chebyshev
approximation for nonrecursive Digital Filters with Linear
Phase”. IEEE Trans.Circuit Theory, Vol. 19, pp, 189-194.
[14]. Ghosal, K., Kar, R. Mandal, and D. Saha, (2013). “A
Novel Firefly Algorithm for Optimal Linear Phase FIR Filter
Design”. International Journal of Swarm Intelligence
Research, Vol. 4, No. 2, pp. 29-48.
[15]. S.K. Saha, R. Kar, D. Mandal, and S.P. Ghoshal, (2013).
“Linear infinite impulse response system identification using
harmony search algorithm”. International Conference on
Communications and Signal Processing (ICCSP), ISBN:
9781467348652, pp. 154 158.
[16]. M. Shukla, and G.R. Mishra, (2014). “DAPSO and PSOVAF
in Linear Phase Digital Low Pass FIR Filter Design”.
Circuits and Systems, Vol. 5, pp. 57-67.
[17]. A.P. Singh, and Neha, (2014). “Design of Linear Phase
Low Pass FIR Filter using Particle Swarm Optimization
Algorithm”. International Journal of Computer
Applications, Vol. 98– No. 3.
[18]. T. Singh, and H.S. Josan, (2014). “Design of Low Pass
Digital FIR Filter using Cuckoo Search Algorithm”.
International Journal of Engineering Research and
Applications, ISSN: 2248-9622, Vol. 4, No. 8, pp.72-77.
[19]. H.R. Tizhoosh, (2005). “Opposition-based learning: a new scheme for machine intelligence”. In Proceedings of
the International Conference on Computational
Intelligence for Modelling, Control and Automation, The
Scientific World Journal, Vol. 1, pp. 695–701.
[20]. H.R. Tizhoosh, (2006). “ Opposition-based
reinforcement learning”. Journal of Advanced
Computational Intelligence and Intelligent Informatics,
The Scientific World Journal, Vol. 10, pp. 578–585.
[21]. Vural, R.A. Turkey, and U.E. Ayten, “Optimized analog
th filter approximation via evolutionary algorithms”. 12
International Conference on Intelligent Systems Design
and Applications (ISDA), ISSN: 21647143, pp. 485-90.
[22]. H. Wang, H. Ouyang, L. Gao, and W. Qin, (2014).
“Opposition based learning harmony search algorithm with
th mutation for solving global optimization problems”. 26
International Chinese conference on Control and Decision
Conference (CCDC), ISBN: 9781479937073, pp.1090-
1094.
[23]. J. Yang, and J. Zhu, (2012). “A Modified Harmony
Search Algorithm for Optimization Problems”. Fifth
International Symposium on Computational Intelligence
and Design (ISCID), Vol. 2, pp. 100–104.
[24]. J. Duan, H. Sang, J. Li, and B. Zhang, (2014). “A new
penalty function method for constrained optimization
using harmony search algorithm”. IEEE Congress on
Evolutionary Computation (CEC), ISBN: 9781479966264,
pp. 853-859.