References
[1]. American Cancer Society, (2010). Breast Cancer Facts
& Figures, Atlanta (2009-2010). Retrieved from https:// www.cancer.org/cancer/breast-cancer.html
[2]. Kegelmeyer, L. N., Hernandez, J. A., & Logan, C. M.
(September 14, 1993). Automated analysis for
microcalcifications in high- resolution digital
mammograms. Proc. SPIE 1898, Medical Imaging 1993:
Image Processing, 472. doi:10.1117/12.154533
[3]. Malar, E., Kandaswamy, A., Chakravarthy, D., &
Dharan, A. G. (2012). A novel approach for detection and classification of mammographic microcalcifications using
wavelet analysis and extreme learning machine.
Computers in Biology and Medicine, 42(9), 898-905.
[4]. Manjunath, B. S., & Ma, W. Y. (1996). Texture features for
browsing and retrieval of image data. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 18(8), 837-842.
[5]. Pilot European Image Processing Archive., (n.d.). The
Mini-MIAS Database of Mammograms. Retrieved fromhttp://peipa.essex.ac.uk/info/mias.html
[6]. Strickland, R. N., & Hahn, H. I. (1996). Wavelet
transforms for detecting microcalcifications in
mammograms. IEEE Transactions on Medical Imaging,
15(2), 218-229.
[7]. Suresh, S., Babu, R. V., & Kim, H. J. (2009). No-reference image quality assessment using modified extreme learning
machine classifier. Applied Soft Computing, 9(2), 541-552.
[8]. Suresh, S., Saraswathi, S., & Sundararajan, N. (2010).
Performance enhancement of extreme learning machine
for multi-category sparse data classification problems.
Engineering Applications of Artificial Intelligence, 23(7),
1149-1157.
[9]. WHO, (2017). Cancer-Fact Sheet. Retrieved fromhttp://www.who.int/mediacentre/factsheets/fs297/en/
[10]. Yu, S., & Guan, L. (2000). A CAD system for the
automatic detection of clustered microcalcifications in
digitized mammogram films. IEEE Transactions on Medical
Imaging, 19(2), 115-126.