Steady MHD Heat and Mass Transfer Flow Over a Permeable Stretching Surface with Velocity, Thermal, and Mass Slip Conditions

Kuppala R. Sekhar*, G.Viswanatha Reddy**
* Research Scholar, Department of Mathematics, Sri Venkateswara University, Tirupati, India.
** Senior Professor, Department of Mathematics, Sri Venkateswara University, Tirupati, India.
Periodicity:April - June'2017
DOI : https://doi.org/10.26634/jmat.6.2.13517

Abstract

An analysis is made to study the velocity, thermal and mass slips on steady MHD boundary layer heat and mass transfer flow over a stretching surface in the presence of suction. The governing partial differential equations are transformed into self-similar ordinary differential equations using similarity transformations. Then the obtained self-similar equations are solved by Runge-Kutta fourth order method using shooting technique. The numerical solutions for pertinent parameters on the dimensionless velocity, temperature, concentration, skin friction coefficient, the heat transfer coefficient, and the Sherwood number are illustrated in tabular form and are discussed graphically.

Keywords

Stretching Sheet, Slip Effects, MHD, Shooting Technique, Suction.

How to Cite this Article?

Sekhar, K.R., and Reddy, G.V. (2017). Steady MHD Heat and Mass Transfer Flow Over a Permeable Stretching Surface with Velocity, Thermal, and Mass Slip Conditions. i-manager’s Journal on Mathematics, 6(2), 42-50. https://doi.org/10.26634/jmat.6.2.13517

References

[1]. Abel, M. S., Mahesha, N., Sharanagouda, A., & Malipatil, B. (2011). Heat transfer due to MHD slip flow of a secondgrade liquid over a stretching sheet through a porous medium with non-uniform heat source/sink. Chem Eng Commun., 198(2), 191-213.
[2]. Asghar, S., Mohyuddin, M.R., & Hayat, T. (2003). Unsteady flow of third-grade fluid in the case of suction. Mathematical & Computer Modeling, 38(1-2), 201-208.
[3]. Asghar, S., Mohyuddin, M. R., & Hayat, T. (2005). Effects of Hall current and heat transfer on flow due to a pull of eccentric rotating disks. International Journal of Heat and Mass Transfer, 48(3-4), 599-607.
[4]. Babu, P. R., Rao, J. A., & Sheri, S. (2014). Radiation effect on MHD heat and mass transfer flow over a shrinking sheet with mass suction. J. Appl. Fluid Mech., 7(4), 641-650.
[5]. Bhargava, R., & Goyal, M. (2014). MHD non-Newtonian nanofluid flow over a permeable stretching sheet with heat generation and velocity slip. Int. J. Math. Comput. Phys., Electr. Comput. Eng., 8(6), 912-918.
[6]. Bhattacharyya, K. (2011). Effects of heat source/sink on MHD flow and heat transfer over a shrinking sheet with mass suction. Chem. Eng. Res. Bull., 15(1), 12-17.
[7]. Brewster, M. Q. (1992). Thermal Radiative Transfer and Properties. John Wiley & Sons. New York.
[8]. Chauhan, D. S., & Agarwal, R. (2011). MHD flow through a porous medium adjacent to a stretching sheet: Numerical and an approximate solution. Eur. Phys. J. Plus., 126(47), 11047-53.
[9]. Cortell, R. (2005). Flow and Heat transfer of fluid through a pours medium over a stretching sheet with internal heat generation/absorption suction blowing. Fluid Dyn. Res., 37(4), 231-245.
[10]. Crane, L. (1970). Flow past a stretching plate. Z. Angew. Math. Phy., 21(4), 645-647.
[11]. Gaffar, S. A., Prasad, V. R., & Reddy, E. K. (2015). Computational study of non-Newtonian Eyring-powell fluid from a horizontal circular cylinder with Biot number effects. Int. J. Math. Archv., 6(9), 114-132.
[12]. Hayat, T., Qasim, M., & Mesloub, S. (2002). MHD flow and heat transfer over permeable stretching sheet with slip conditions. Int. J. Num. Meth. Fluids., 66(8), 963-975.
[13]. Ishak, A. (2010). Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica., 45(3), 367-373.
[14]. Kemparaju, M. C., Abel, M. S., & Mahantesh, M. (2015). Heat transfer in MHD flow over a stretching sheet with velocity and thermal slip condition. Adv. Phys. Theo. and Appl., 49, 25-33.
[15]. Mohyuddin, M. R., & Gotz, T. (2005). Resonance behaviour of viscoelastic fluid in Poiseuille flow in the presence of a transversal magnetic field. International Journal for Numerical Methods in Fluids, 49(8), 837-847.
[16]. Pantokratoras, A., & Fang, T. (2011). A note on the Blasius and Sakiadis flow of a non-Newtonian power-law fluid in a constant transverse magnetic field Acta. Mech., 218(1), 187-194.
[17]. Raju, C. S. K., Sekhar, K. R., Ibrahim, S. M., Lorenzini, G., Reddy, G. V., & Lorenzini, E. (2017). Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nano-particles. Continuum Mech. Thermodyn., 29(3), 699-713.
[18]. Raju, C. S. K., & Sandeep, N. (2016). Falkner-Skan flow of a magnetic-Carreau fluid past a wedge in the presence of cross diffusion effects. Eur. Phys. J. Plus., 131(8), 1-13.
[19]. Raju, M. C., Varma S. V. K., & Rao, R. R. K. (2013). Unsteady MHD free convection and chemically reactive flow past an infinite vertical porous plate. i-manager’s Journal on Future Engineering and Technology, 8(3), 35-40.
[20]. Raju, M. C., Varma, S. V. K., & Reddy, N. A. (2012). Radiation and mass transfer effects on a free convection flow through a porous medium bounded by a vertical surface. i-manager’s Journal of Future Engineering and Technology, 7(2), 7-12.
[21]. Raju, M. C., & Varma, S. V. K. (2011a). Unsteady MHD free convection oscillatory Couette flow through a porous medium with periodic wall temperature. i-manager’s Journal on Future Engineering and Technology, 6(4), 7-12.
[22]. Raju, M. C., Varma, S. V. K., & Reddy, N. A. (2011b). MHD Thermal diffusion Natural convection flow between heated inclined plates in porous medium. i-manager’s Journal on Future Engineering and Technology, 6(2), 45-48.
[23]. Rashidi, M. M., & Erfani, E. (2012). Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating. Eng. Comput., 29(6), 562-579.
[24]. Rashidi, M. M., Rostami, B., Freidoonimehr, N., & Abbasbandy, S. (2014). Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng. J., 5(3), 901-912.
[25]. Reddy, T. S., Varma, S. V. K., & Raju, M. C. (2012a). Chemical reaction and radiation effects on unsteady MHD free convection flow near a moving vertical plate. i-manager’s Journal on Future Engineering & Technology, 7(4), 11-20.
[26]. Reddy, T. S., Raju, M. C., & Varma, S. V. K., (2012b). The effect of slip condition, radiation and chemical reaction on unsteady MHD periodic flow of a viscous fluid through saturated porous medium in a planar channel. i-manager’s Journal on Mathematics, 1(1), 18-28.
[27]. Saha, S., Saha, G., Islam, Q. M., & Raju, M. C. (2010). Mixed convection inside a lid-driven parallelogram cavity with isoflux heating. i-manager’s Journal on Future Engineering and Technology, 6(1), 14-21.
[28]. Sajid, M. (2009). Homotopy analysis of stretching flows with partial slip. Int. J. Nonlinear science., 8(3), 284-290.
[29]. Samra, Mohyuddin, M. R., & Rizwan, S. M. (2015). Similarity having perturbation in Newtonian fluid. i-managers Journal on Mathematics, 4(4), 22-27.
[30]. Sekhar, K. P., Reddy, G. V., & Varma, S. V. K. (2016). Mixed convection Couette flow of a nanofluid through a vertical channel. Elixir International Journal, 99, 43237-43241.
[31]. Uddin, M. J., Khan, W. A., Zohra, F. T., & Ismail, A. M. (2016). Blasius and Sakiadis slip flows of Nano-fluid with radiation effects. J. Aerosp. Eng., 29(4), 04015080-10.
[32]. Wang, C. Y. (2009). Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Analysis. Real world Applications., 10(1), 375-380.
[33]. Yasin, M. H. M., Ishak, A., & Pop, I. (2016). MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect. J. Mag. Magn. Mat., 407(1), 235-240.
[34]. Zaimi, K., Ishak, A., & Pop, I. (2014). “Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model”. PLoS One., 19(11), 111-743.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.