References
[1]. Y.M. Abebe, M.R. Pasumarthi, and G.N. Mudavath,
(2016). “Load Flow Analysis of uncertain Power System
Through Affine Arithmetic”. In Proc. Microelectronics,
Electromagnetics and Telecommunications, Springer
India, Vol. 372, pp. 217–231.
[2]. H. Bevrani, A. Ghosh, and G. Ledwich (2010).
“Renewable energy sources and frequency regulation:
Survey and new perspectives”. IET Renewable Power
Generation., Vol. 4, No. 5, pp. 438–45.
[3]. B. Borkowska, (1974). “Probabilistic load flow”. IEEE
Transactions on Power App., Vol. 3, pp. 752-759.
[4]. G. Capizzi, F. Bonanno, and C. Napoli, (2011).
“Recurrent neural network-based control strategy for
battery energy storage in generation systems with
intermittent renewable energy sources”. In Proc. 2011
International Conference on Clean Electrical Power
(ICCEP), pp. 336-340.
[5]. J.L.D. Comba and J. Stolfi, (1998). “Affine arithmetic
and its applications to computer graphics”. In Proc. Anais
do VII SIBGRAPI, pp. 9-18.
[6]. T. Cui and F. Franchetti, (2013). “A Quasi-Monte Carlo
approach for radial distribution system probabilistic load
flow”. In Proc. 2013 IEEE PES Innovative Smart Grid
Technologies Conference (ISGT), pp. 1-6.
[7]. L.H. De Figueired, and J. Stolfi, (2004). “Affine
Arithmetic Concepts and Applications”. Numerical
Algorithms, Vol. 37, No.1, pp. 147–158.
[8]. P.M. Fonte and C. Monteiro, (2016). “Net load
forecasting in presence of renewable power
th curtailment”. In Proc. 2016 13 International Conference
on the European Energy Market (EEM), pp. 1-5.
[9]. H. Glavitsch and R. Bacher, (1991). “Optimal power
flow algorithms”. Anal. Control Syst. Tech. Electr. Power
Syst., Vol. 41.
[10]. W. Gu, L. Luo, T. Ding, X. Meng, and W. Sheng, (2014).
“An affine arithmetic-based algorithm for radial
distribution system power flow with uncertainties”.
International Journal of Electrical Power & Energy
Systems, Vol. 58, pp. 242–245.
[11]. W. Heindrich, P. Slusallek, and H.P. Seidel, (1998).
“Sampling Procedural Shaders using Affine Arithmetic”.
ACM Transactions on Graphics (TOG), Vol. 17, No. 3, pp.
158-176.
[12]. E.B. Hreinsson, (2016). “Electric load forecasting inhydro- and renewable based power system”. In Proc.
th 2016 13 International Conference on the European
Energy Market (EEM), pp. 1-6.
[13]. A. Lucas and S. Chondrogiannis, (2016). “Smart grid
energy storage controller for frequency regulation and
peak shaving, using a vanadium redox flow battery”.
International Journal of Electrical Power & Energy
Systems, Vol. 80, pp. 26–36.
[14]. S. Mallick, D.V. Rajan, S. Thakur, P. Acharjee, and S.P.
Ghoshal, (2011). “Development of a new algorithm for
power flow analysis”. Int. J. Electr. Power Energy Syst., Vol.
33, No. 8, pp. 1479–1488.
[15]. G. Manson, (2005). “Calculating frequency
response functions for uncertain systems using complex
affine analysis”. Journal of Sound and Vibration, Vol. 288,
No. 3, pp. 487–52.
[16]. M. Marin, D. Defour, and F. Milano, (2014). “Power
flow analysis under uncertainty using symmetric fuzzy
arithmetic”. In Proc. 2014 IEEE PES General Meeting
Conference & Exposition, pp. 1-5.
[17]. A. Meliopoulos, G. Cokkinides, and X. Chao, (1990).
“A new probabilistic power flow analysis method”. IEEE
Trans. Power Syst., Vol. 5, No. 1, pp. 182-190.
[18]. M. Pirnia, C.A. Canizares, K. Bhattacharya, and A.
Vaccaro (2014). “A Novel Affine Arithmetic Method to
solve Optimal Power Flow problems with uncertainties”.
IEEE Trans. Power Syst., Vol. 29, No. 6, pp. 2775-2783.
[19]. Power Systems Test Case Archive. Retrieved from
http://www.ee.washington.edu/research/pstca
[20]. Ž.B. Rejc and M. Cepin, (2014). “Estimating the
additional operating reserve in power systems with
installed renewable energy sources”. International
Journal of Electrical Power & Energy Systems, Vol. 62, pp.
654–664.
[21]. A. Sobu and G. Wu, (2012). “Optimal operation
planning method for isolated microgrid considering
uncertainties of renewable power generations and load
demand”. In Proc. IEEE PES Innovative Smart Grid
Technologies, pp. 1-6.
[22]. J. Stolfi, and L.D. Figueiredo, (2003). “An Introduction
to Affine Arithmetic”. TEMA - Trends in Applied and
Computational Mathematics, Vol. 4, No. 3, pp. 297-312.
[23]. K. Tanaka, K. Uchida, K. Ogimi, T. Goya, A. Yona, T.
Senjyu, T. Funabashi, and C.H. Kim (2011). “Optimal
Operation by Controllable Loads based on Smart Grid
Topology considering Insolation Forecasted Error”. IEEE
Trans. Smart Grid., Vol. 2, No. 3, pp. 438–444.
[24]. Z. Wang, F. L and Alvarado, F., (1992). “Interval
arithmetic in power flow analysis”. IEEE Trans. Power Syst.,
Vol. 7, No.3, pp. 1341-1349.
[25]. A. Vaccaro, C.A. Canizares, and K. Bhattacharya,
(2013). “A Range Arithmetic-based Optimization Model
for Power Flow Analysis under Interval Uncertainty”. IEEE
Trans. Power Syst., Vol. 28, No. 2, pp. 1179-1186.
[26]. A. Vaccar, C.A. Canizares, and D. Villacci, (2010).
“An Affine Arithmetic-based Methodology for Reliable
Power Flow Analysis in the presence of Data Uncertainty”.
IEEE Trans. Power Syst., Vol. 25, No. 2, pp. 624–632.
[27]. A. Vaccaro, and D. Villacci, (2009). “Radial Power
Flow Tolerance Analysis by Inter val Constraint
Propagation”. IEEE Trans. Power Syst., Vol. 24, No. 1, pp.
28–39.