References
[1]. C. Liu, R. Ranjan, X. Zhang, C. Yang, D.
Georgakopoulos, and J. Chen, (2013). “Public auditing
for big data storage in cloud computing”. In A Survey
Computational Science and Engineering (CSE), 2013
IEEE 16th International Conference on, pp. 1128-1135.
[2]. B. Babcock, S. Babu, M. Datar, R. Motwani, and J.
Widom, (2002). “Models and issues in data stream
systems”. In Proc. The Twenty- first ACM SIGACT-SIGMODw SIGART Symposium on Principles of Database Systems,
Madison, Wisconsin, USA, ACM, pp. 3-5.
[3]. D.M. Blei, A.Y. Ng, and M.I. Jordan, (2002). “Latent
Dirichlet allocation”. Advances in Neural Information
Processing Systems, Vol. 1, pp. 601–608.
[4]. Deerwester S.C, Dumais, (1990). “Indexing by latent
semantic analysis”. JASIS, Vol.41, No. 6, pp. 391–407.
[5]. Hofmann T., (1999). “Probabilistic latent semantic
indexing”. In: SIGIR, p. 50–7.
[6]. J. Li, Z. Xu, Y. Jiang, and R. Zhang, (2014). “The
overview of big data storage and management.
cognitive informatics cognitive computing (ICCI*CC)”. In
IEEE 13th International Conference on, pp. 510-513.
[7]. R. Salakhutdinov, and G. Hilton, (2009). “Semantic
hashing”. International Journal of Approximate
Reasoning, Vol. 50, No. 7, pp. 969-978.
[8]. P. Mirowski, Marc' A Ranzato, and Yann LeCun, (2010).
“Dynamic Auto-Encoders for Semantic Indexing”. In NIPS
2010 Workshop on Deep Learning, pp. 1-9.
[9]. Wu H., Min M.R., and Bai B., (2014). “Deep Semantic
Embedding”. In: SIGIR 2014 Workshop on Semantic
Matching in Information, pp. 46-52.
[10]. S. Dumais, (1994). “Latent Semantic Indexing (LSI)
and TREC-2”. Harman NIST Special Publication, pp. 105-
116.
[11]. Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,
(2006). “Greedy layer-wise training of deep belief
networks”. In NIPS, Vol. 19, p. 153.
[12]. A. Kontostathis, and W.M. Pottenger, (2006). “A
Framework for Understanding Latent Semantic Indexing
(LSI) Performance”. Information Processing and Management, Vol. 42, No. 1, pp. 56-73.
[13]. C. Aswani Kumar, and S. Srinivas, (2005). “An
Information Retrieval Model based on Latent Semantic
Indexing with Intelligent Preprocessing”. Journal of
Information and Knowledge Management, Vol 4, No. 4,
pp. 279-285.
[14]. G.E. Hinton, S. Osindero, and Y.W. The, (2006). “A fast
learning algorithm for deep belief nets”. Neural
Computation, Vol. 18, No. 7, pp. 1527–1554.
[15]. Hinton G.E, and Salakhutdinov R.R., (2006).
“Reducing the dimensionality of data with neural
networks”. Science, Vol. 313, No. 5786, pp. 504-507.
[16]. Chen X.W, and Lin X, (2014). “Big data deep
learning: Challenges and perspectives”. Access, IEEE. Vol.
2, pp. 514–25.
[17]. Bai B, Weston J, Grangier D, Collobert R, Sadamasa
K, Qi Y, Chapelle O, and Weinberger K. (2009).
“Supervised semantic indexing”. In CIKM, pp. 187–96.
[18]. Yan Yan, Xu-Cheng Yin, Bo-Wen Zhang, Chun Yang
and Hon-Wei Hao, (2016). “Semantic indexing with deep
learning: A case study”. Big Data Analytics, Vol. 1, No. 1, p. 7.
[19]. C. Aggrawal, (2007). Data Streams: Models and
Algorithms. Springer Science Business Media, LLC.
[20]. L. Golab, and M.T. Ozsu, (2003). “Issues in data
stream management”. ACM SIGMOD Record, Vol. 32,
No. 2, pp. 5-14.
[21]. N. Shivakumar, and H. Garcia Molina, (1997).
“Wave-indices: Indexing evolving databases”. In Proc.
ACM SIG - MOD international Conference on
Management of Data, pp. 381-392.