References
[1]. Sarit K. Das, Nandy Putra, and Wilfried Roetzel, (2003).
“Pool boiling characteristics of nano-fluids”. International
Journal of Heat and Mass Transfer, Vol. 46, No. 5, pp.
851–862.
[2]. In Cheol Bang, and Soon Heung Chang, (2005).
“Boiling heat transfer performance and phenomena of
Al O –water nano-fluids from a plain surface in a pool”. 2 3
International Journal of Heat and Mass Transfer, Vol. 48,
No. 12, pp. 2407–2419.
[3]. S.J. Kim, I.C. Bang, J. Buongiorno, and L.W. Hu, (2007).
“Study of pool boiling and critical heat flux enhancement
in nanofluids”. Bulletin of the Polish Academy of Sciences
Technical Sciences, Vol. 55, No. 2, pp. 211-216.
[4]. Hyung Dae Kim, Jeongbae Kim, and Moo Hwan Kim,
(2007). “Experimental studies on CHF characteristics of
nano-fluids at pool boiling”. International Journal of
Multiphase Flow, Vol. 33, No. 7, pp. 691–706.
[5]. Ramakrishna N. Hegde, Srikanth S. Rao, and R.P.
Re d d y, ( 2 0 1 1 ) . “ E x p e r ime n t a l s t u d y o n C u O
Nanoparticles in distilled water and its effect on heat
transfer on a vertical surface”. Journal of Mechanical
Science and Technology, Vol. 25, No. 11, pp. 2927-2934.
[6]. Q.T. Pham, T.I. Kim, S.S. Lee, and S.H. Chang, (2012).
“Enhancement of critical heat flux using nano-fluids for Invessel
Retention-External Vessel Cooling”. Applied
Thermal Engineering, Vol. 35, pp. 157-165.
[7]. G. Dewitt, T. Mckrell, J. Buongiorno, L.W. Hu, and R.J.
Park, (2013). “Experimental Study of Critical Heat Flux with
Alumina-Water Nanofluids in Downward-Facing Channels
for In-Vessel Retention Applications”. Nuclear Engineering
and Technology, Vol. 45, No. 3, pp. 335-346.
[8]. Xiao Bo-Qi, (2013). “Prediction of heat transfer of
nanofluid on critical heat flux based on fractal geometry”.
Chin. Phys. B, Vol. 22, No. 1, pp. 014402-1-014402-6.
[9]. M.M. Sarafraz, and F. Hormozi, (2014). “Nucleate pool
boiling heat transfer characteristics of dilute
Al O –ethylene glycolnanofluids ”. International 2 3
Communications in Heat and Mass Transfer, Vol. 58, pp.
96-104.
[11]. Ho Seon Ahn and Moo Hwan Kim, (2012). “A Review
on Critical Heat Flux Enhancement with Nanofluids and
Surface Modification”. Journal of Heat Transfer, Vol. 134,
No. 2, pp. 024001-1 - 024001-13.
[12]. S.M. You, J. Kim, and K.H. Kim, (2003). “Effect of
nanoparticles on critical heat flux of water in pool boiling
heat transfer”. Applied Physics Letters, Vol. 83, No. 16, pp. 3374–3376.
[13]. S.H. Chang, and W.P. Baek, (2003). “Understanding,
th predicting, and enhancing critical heat flux”. The 10
International Topical Meeting on Nuclear Reactor
Thermal Hydraulics (NURETH-10), Seoul, Korea, pp. 1-20.
[14]. S.U.S. Choi, and J.A. Eastman, (1995). “Enhancing
thermal conductivity of fluids with nanoparticles”. In D.A.
Siginer, H.P. Wang (Eds.), Developments and Applications
of Non-Newtonian Flows, ASME, New York, USA, pp.
99–105.
[15]. Hemin K. Patel, Vishal D. Prajapati, Sachin P. Patel,
Ajay R. Solanki, and N.K. Chavda, (2016). “Development
of Critical Heat Flux Setup”. (UG Project, A.D. Patel Institute
of Technology, Gujarat Technological University).
[16]. Patel Krunal J., Patel Anuj C., Prajapati Keval B.,
Raval Bhavesh R., and N.K. Chavda, (2016).
“Experimental Evaluation of Critical Heat Flux of Nichrome
Wire using CuO & TiO Nanofluid”. (UG Project, A.D. Patel 2
Institute of Technology, Gujarat Technological University).