References
[1]. P. Colomban, (1992). Proton Conductors: Solids,
Membranes and Gels-materials and Devices. Vol. 2,
Cambridge University Press.
[2]. K.D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier,
(1998). “Imidazole and pyrazole-based proton conducting polymers and liquids”. Electrochim. Acta, Vol.
43, No. 10, pp. 1281-1288.
[3]. L. Carrette, K.A. Friedrich, and U. Stimming, (2001).
“Fuel Cells–Fundamentals and Applications”. Fuel Cells,
Vol. 1, No. 1, pp. 5-39.
[4]. A. Hampp, A.L. Holt, J.G.A. Wehner, and D.E. Morse,
(2012). “Plastic transmissive infrared electrochromic
devices”. Macromolecular Chemistry and Physics, Vol.
211, No. 15, pp. 1701-1707
[5]. J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M.
Engelhard, O. Borodin, and J.G. Zhang, (2015). “High
rate and stable cycling of lithium metal anode”. Nature
Comm., Vol. 6, pp. 1-9.
[6]. D.E. Fenton, D.E. Parker, and P.V. Wright, (1973).
“Complexes of alkali metal ions with poly (ethylene)
oxide”. Polymer, Vol. 14, No. 11, pp. 589-590.
[7]. P.V. Wright, (1975). “Electrical conductivity in ionic
complexes of poly (ethylene) oxide”. Br. Polym. J., Vol. 7,
No. 5, pp. 319-324.
[8]. R. Kumar, and S.S. Sekhon, (2004). “Evidence of ion
pair breaking by dispersed polymer in polymer gel
electrolytes”. Ionics, Vol. 10, No. 5, pp. 436-442.
[9]. Rajiv Kumar, (2014). “Enhancement in Electrical
Properties of PEO based Nano-composite Gel
Electrolytes”. i-manager's Journal on Material Science,
Vol. 2, No. 3, Oct-Dec 2014, Print ISSN 2347–2235, E-ISSN
2347–615X, pp. 12-17.
[10]. S. Chandra, S.S. Sekhon, and N. Arora, (2000).
“PMMA based protonic polymer gel electrolytes”. Ionics,
Vol. 6, No. 1, pp. 112-118.
[11]. W. Wieczorek, G. Zukowska, R. Borkowska, S.H.
Chung, and S. Greenbaum, (2001). “A basic investigation
of anhydrous proton conducting gel electrolytes”.
Electrochima acta, Vol. 46, No. 10, pp. 1427-1438.
[12]. R. Kumar, B. Singh, and S.S. Sekhon, (2005). “Effect of
dielectric constant of solvent on the conductivity behavior
of polymer gel electrolytes”. J. Mater. Sci., Vol. 40, No. 5,
pp. 1273-1275.
[13]. R. Kumar, J.P. Sharma, and S.S. Sekhon, (2005). “FTIR
study of ion dissociation in PMMA based gel electrolytes
containing ammonium triflate: Role of dielectric constant of solvent”. Euro. Polym. J., Vol. 41, No. 11, pp. 2718-2725.
[14]. H.P. Singh, R. Kumar, and S.S. Sekhon, (2005).
“Correlation between ionic conductivity and fluidity of
polymer gel electrolytes containing NH CF SO ”. Bull. 4 3 3
Mater. Sci., Vol. 28, No. 5, pp. 467–472.
[15]. R. Kumar, and S.S. Sekhon, (2008). “Effect of
molecular weight of PMMA on the conductivity and
viscosity behavior of polymer gel electrolytes containing
NH CF SO ”. Ionics, Vol. 14, No. 6, pp. 509-514.
[16]. R. Kumar, and S.S. Sekhon, (2013). “Conductivity, FTIR
studies and thermal behavior of PMMA-based proton
conducting polymer gel electrolytes containing triflic
acid”. Ionics, Vol. 19, No. 11, pp. 1627-1635.
[17]. R. Kumar, (2016). “Electrical characterization of PVdF
based proton conducting polymer gel electrolytes”. Curr.
Smart Mater., Vol. 1, No. 1, pp. 63-67.
[18]. Rajiv Kumar, Shuchi Sharma, Naresh Dhiman, and
Dinesh Pathak, (2016). “Role of Polymer in Enhancement
of Conductivity of Proton and Lithium Conducting Polymer
Gel Electrolytes”. i-manager's Journal on Material
Science, Vol. 4, No. 2, Jul-Sep 2016 Print ISSN 2347–2235,
E-ISSN 2347–615X, pp. 1-8.
[19]. J.K. Sears, and J.R. Darby, (1982). “Mechanism of
plasticizer action in the technology of plasticizers”. In J. K.
Sears, J. R. Darby (Eds.), The Technology of Plasticizers,
Wiley-Interscience, New York, NY, USA, pp. 35-77.
[20]. W. Barenswaard, V.M. Litvinov, F. Socrren, R.L.
Scherreenberg, C. Gondard, and C. Colemonts, (1999).
“Crystallinity and microstructure of plasticized poly (vinyl
13 1 chloride) - A C and H solid state NMR study”. Macromol.,
Vol. 32, No. 1, pp. 167-180.
[21]. Shuchi Sharma, Naresh Dhiman, Dinesh Pathak,
and Rajiv Kumar, (2016). “Effect of Donor Number of
Plasticizers on Conductivity of Polymer Electrolytes
Containing NH F”. i-manager's Journal on Material 4
Science, Vol. 3, No. 4, Jan-Mar 2016 Print ISSN 2347–2235,
E-ISSN 2347–615X, pp. 28-34.
[22]. R. Kumar, S. Sharma, N. Dhiman, and D. Pathak,
(2016). “Study of Proton Conducting PVdF based
Plasticized Polymer Electrolytes containing NH F”. Mater. 4
Sci. Res. India, Vol. 13, pp. 21-27.
[23]. B. Singh, R. Kumar, and S.S. Sekhon, (2005).
“Conductivity and viscosity behaviour of PMMA based
gels and nano dispersed gels: Role of dielectric constant
of solvent”. Solid State Ionics, Vol. 176, No. 11, pp. 1577-
1583.
[24]. R. Kumar, and S.S. Sekhon, (2009). “Conductivity
modification of proton conducting polymer gel
electrolytes containing a weak acid (ortho-hydroxy
benzoic acid) with the addition of PMMA and fumed
silica”. J. Appl. Electrochem., Vol. 39, No. 3, pp. 439-445.
[25]. Rajiv Kumar, (2014). “Comparison of Composite
Proton Conducting Polymer Gel Electrolytes containing
Weak Aromatic Acids”. i-manager's Journal on Material
Science, Vol. 2, No. 2, Jul-Sep 2014 Print ISSN 2347–2235,
E-ISSN 2347–615X, pp. 23-34.
[26]. R. Kumar, (2014). “Effect of donor number of solvent
and nano-filler on electrical behaviour of composite gel
electrolytes”. Insight: An International J. Sci., Vol. 1, pp. 1-6.
[27]. Rajiv Kumar, (2015). “Electrical Properties of
Nanocomposite Polymer Gels based on PMMADMA/
DMC-LiCLO -SiO ”. i-manager's Journal on Material 4 2
Science, Vol. 3, No. 2, Jul-Sep 2015 Print ISSN 2347–2235,
E-ISSN 2347–615X, pp. 21-27.
[28]. R. Kumar, (2015). “Nano-composite polymer gel
electrolytes containing ortho-nitro benzoic acid: Role of
dielectric constant of solvent and fumed silica”. Ind. J.
Phys., Vol. 89, No. 3, pp. 241-248.
[29]. Sukanchan Palit, (2015). “Application of
Nanotechnology, Nanofiltration, and the Future Vision of
Environmental Engineering Science - A Critical Overview”.
i-manager's Journal on Future Engineering and
Technology, Vol. 10, No. 4, May-Jul 2015 Print ISSN 0973-
2632, E-ISSN 2230-7184, pp. 38-48.
[30]. S. Sharma, N. Dhiman, D. Pathak, and R. Kumar,
(2016). “Effect of nano-size fumed silica on electrical
conductivity of PVdF-HFP based plasticized nanocomposite
polymer electrolytes”. Ionics, Vol. 22, No. 10,
pp. 1865-1872.
[32]. K. Aruna, K. Raghavendra Rao, and P. Parhana
(2016). “A Systematic Review on Nanomaterials:
Properties, Synthesis, and Applications”. i-manager's
Journal on Future Engineering and Technology, Vol. 11,
No. 2, Nov 2015-Jan 2016 Print ISSN 0973-2632, E-ISSN
2230-7184, pp. 25-36.
[33]. A. Zalewska, W. Wieczorek, and J.R. Stevens, (1996).
“Composite polymeric electrolytes from the PEO-PAAMNH
SCN system”. J. Phys. Chem., Vol. 100, No. 27, pp 4
11382–11388.
[34]. S.L. Agrawal, M. Singh, M.M. Dwivedi, M. Tripathi,
and K. Pandey, (2009). “Dielectric relaxation studies on
[PEO–SiO ]: NH SCN nanocomposite polymer electrolyte 2 4
films”. J. Mater. Sci., Vol. 44, No. 22, pp. 6060–6068.
[36]. D.A. Skoog, and J.J. Leary, (1992). Principles of Instrumental Analysis. Harcourt Brace College Publishers,
Orlando, USA, Ch. 20.
[37]. M.A. Ratner, (1987). In: Polymer Electrolyte Reviews-I;
J.R. MacCallum, C.A. Vincent, (Eds.), Elsevier Applied
Science, New York.
[38]. O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, and
C. Truche, (1993). “Fast ion transport in new lithium
electrolytes gelled with PMMA. Influence of polymer
concentration”. Solid State Ionics, Vol. 66, No. 1-2, pp. 97-
104.
[39]. C.W. Kuo, C.W. Huang, B.K. Chen, W.B. Li, P.R. Chen, T.
H. Ho, C.G. Tseng, and T.Y. Wu, (2013). “Enhanced ionic
conductivity in PAN-PEGME-LiClO -PC composite polymer 4
electrolytes”. Int. J. Electrochem. Sci., Vol. 8, pp. 3834-
3850.
[40]. R. Kumar, (2017). “Ion conductivity and thermal
properties of nano-composite polymer gel electrolytes
containing NH SCN for electrochemical devices”. Int. J. 4
Chem. Tech. Res., Vol. 10, No. 3, pp. 289-295.
[41]. R. Kumar, S. Sharma, D. Pathak, N. Dhiman, and N.
Arora, (2017). “Ionic conductivity, FTIR and thermal studies
of nano-composite plasticized proton conducting
polymer electrolytes”. Solid State Ionics, Vol. 305, pp. 57-62.