References
[1]. Barber, D. (1989). “A review of image reconstruction
techniques for electrical impedance tomography”.
Medical Physics, Vol. 16, No. 2, pp. 162-169.
[2]. Borsic, A., Comina, C., Foti, S., Lancellotta, R., and
Musso, G. (2005). “Imaging heterogeneities with
electrical impedance tomography: Laboratory results”.
Géotechnique, Vol. 55, No. 7, pp. 539-547.
[3]. Borsic, A., Graham, B.M., Adler, A., and Lionheart,
W.R. (2007). “Total variation regularization in electrical
impedance tomography”. Technical Report 92 School of
Mathematics, University of Manchester.
[4]. Borsic, A., Graham, B.M., Adler, A., and Lionheart,
W.R.B. (2010). “In vivo Impedance Imaging With Total
Variation Regularization”. IEEE Transactions on Medical
Imaging, Vol. 29, No. 1, pp. 44-54.
[5]. Chan, T.F., and Wong, C.K. (1998). “Total variation
blind deconvolution”. IEEE Transactions on Image
Processing, Vol. 7, No. 3, pp. 370-375.
[6]. Cheng, K.S., Isaacson, D., Newell, J.C., and Gisser,
D.G. (1989). “Electrode Models for Electric-Current
Computed-Tomography ”. IEEE Transactions on
Biomedical Engineering, Vol. 36, No. 9, pp. 918-924.
[7]. Comina, C., Cosentini, R.M., Della Vecchia, G., Foti,
S., and Musso, G. (2011). “3D-electrical resistivity
tomography monitoring of salt transport in homogeneous
and layered soil samples”. Acta Geotechnica, Vol. 6, No.
4, pp. 195-203.
[8]. Daily, W., Ramirez, A., Labrecque, D., and Nitao, J.
(1992). “Electrical resistivity tomography of vadose water
movement”. Water Resources Research, Vol. 28, No. 5,
pp. 1429-1442.
[9]. Dines, K., and Lytle, R.J. (1981). “Analysis of electrical
conductivity imaging”. Geophysics, Vol. 46, No. 7, pp.
1025-1036.
[10]. Du Plooy, R., Villain, G., Lopes, S.P., Ihamouten, A.,
Derobert, X., and Thauvin, B. (2013). “Electromagnetic
non-destructive evaluation techniques for the monitoring
of water and chloride ingress into concrete: A
comparative study”. Materials and Structures, Vol. 48, No.
1-2, pp. 369-386.
[11]. Elaqra, H., Godin, N., Peix, G., R'Mili, M., and
Fantozzi, G. (2007). “Damage evolution analysis in mortar,
during compressive loading using acoustic emission and
X-ray tomography: Effects of the sand/cement ratio”.
Cement and Concrete Research, Vol. 37, No. 5, pp. 703-
713.
[12]. Ervin, B.L., Kuchma, D.A., Bernhard, J.T., and Reis, H.
(2009). “Monitoring corrosion of rebar embedded in
mortar using high-frequency guided ultrasonic waves”.
Journal of Engineering Mechanics, Vol. 135, No. 1, pp. 9-
19.
[13]. Hallaji, M., Seppanen, A., and Pour-Ghaz, M. (2014).
“Electrical impedance tomography-based sensing skin
for quantitative imaging of damage in concrete”. Smart
Materials and Structures, Vol. 23, No. 8.
[14]. Hallaji, M., Seppanen, A., and Pour-Ghaz, M. (2015).
“Electrical resistance tomography to monitor unsaturated
moisture flow in cementitious materials”. Cement and
Concrete Research, Vol. 69, pp. 10-18.
[15]. Henderson, R.P., and Webster, J.G. (1978). “An
impedance camera for spatially specific measurements
of the thorax”. IEEE Transactions on Biomedical
Engineering, Vol. 3, pp. 250-254.
[16]. Hou, T.C., and Lynch, J.P. (2008). “Electrical
Impedance Tomographic Methods for Sensing Strain
Fields and Crack Damage in Cementitious Structures”.
Journal of Intelligent Material Systems and Structures, Vol.
20, No. 11, pp. 1363-1379.
[17]. Karaiskos, G., Deraemaeker, A., Aggelis, D., and
Van Hemelrijck, D. (2015). “Monitoring of concrete
structures using the ultrasonic pulse velocity method”.
Smart Materials and Structures, Vol. 24, No. 11, 113001.
[18]. Karhunen, K., Seppanen, A., Lehikoinen, A.,
Monteiro, P.J.M., and Kaipio, J.P. (2010). “Electrical
Resistance Tomography imaging of concrete”. Cement
and Concrete Research, Vol. 40, No. 1, pp. 137-145.
[19]. Kee, S.H., and Zhu, J. (2013). “Using piezoelectric
sensors for ultrasonic pulse velocity measurements in
concrete”. Smart Materials and Structures, Vol. 22, No. 11,
115016.
[20]. Komlos, K., Popovics, S., Nürnbergerova, T., Babal,
B., and Popovics, J. (1996). “Ultrasonic pulse velocity test
of concrete properties as specified in various standards”.
Cement and Concrete Composites, Vol. 18, No. 5, pp.
357-364.
[21]. Li, D.S., Ruan, T., and Yuan, J.H. (2012). “Inspection of
reinforced concrete interface delamination using
ultrasonic guided wave non-destructive test technique”.
Science China-Technological Sciences, Vol. 55, No. 10,
pp. 2893-2901.
[22]. Lytle, R., and Dines, K. (1978). “An impedance
camera: A system for determining the spatial variation of
electrical conductivity: Lawrence Livermore Laboratory
paper UCRL-52413”. USGRAI (78), Vol. 25.
[23]. Maierhofer, C. (2003). “Nondestructive evaluation of
concrete infrastructure with ground penetrating radar”.
Journal of Materials in Civil Engineering, Vol. 15, No. 3, pp.
287-297.
[24]. Murai, T., and Kagawa, Y. (1985). “Electrical
impedance computed tomography based on a finite
element model”. IEEE Transactions on Biomedical
Engineering, Vol. 3, pp. 177-184.
[25]. Na, S., and Lee, H. (2012). “A technique for improving
the damage detection ability of the electro-mechanical
impedance method on concrete structures”. Smart
Materials and Structures, Vol. 21, No. 8, 085024.
[26]. Na, W., Kundu, T., and Ehsani, M.R. (2002). “Ultrasonic
guided waves for steel bar concrete interface testing”.
ARIEL, Vol. 129, pp. 31-248.
[27]. Polydorides, N., and Lionheart, W.R.B. (2002). “A
Matlab toolkit for three-dimensional electrical
impedance tomography: A contribution to the Electrical
Impedance and Diffuse Optical Reconstruction Software
project”. Measurement Science & Technology, Vol. 13,
No. 12, pp. 1871-1883.
[28]. Pour-Ghaz, M., Kim, J., Nadukuru, S.S., O'connor, S.
M., Michalowski, R.L., Bradshaw, A.S., Green, R.A., Lynch,
J.P., Poursaee, A., and Weiss, W.J. (2011). “Using electrical,
magnetic and acoustic sensors to detect damage in
segmental concrete pipes subjected to permanent
ground displacement ”. Cement and Concrete
Composites, Vol. 33, No. 7, pp. 749-762.
[29]. Rhim, H.C., and Buyukozturk, O. (1998).
“Electromagnetic properties of concrete at microwave
frequency range”. ACI Materials Journal, Vol. 95, No. 3,
pp. 262-271.
[30]. Ruan, T., and Poursaee, A. (2015). “Development of
LabVIEW-based Automated Measurement System for
Electrical Impedance Tomography”. (Under preparation).
[31]. Somersalo, E., Cheney, M., and Isaacson, D. (1992).
“Existence and Uniqueness for Electrode Models for
Electric-Current Computed-Tomography”. SIAM Journal
on Applied Mathematics, Vol. 52, No. 4, pp. 1023-1040.
[32]. Song, G., Gu, H., Mo, Y., Hsu, T., and Dhonde, H.
(2007). “Concrete structural health monitoring using
embedded piezoceramic transducers”. Smart Materials
and Structures, Vol. 16, No. 4, pp. 959.
[33]. Stacey, R.W. (2006). “Electrical impedance
tomography”. Department of Energy and by the
Department of Petroleum Engineering, Stanford University.
[34]. Tikhonov, A.N., Goncharsky, A., Stepanov, V., and
Yagola, A.G. (2013). Numerical Methods for the Solution
of ill-posed Problems. Springer Science & Business Media,
Vol. 328.
[35]. Verstrynge, E., Pfeiffer, H., and Wevers, M. (2014). “A
novel technique for acoustic emission monitoring in civil
structures with global fiber optic sensors”. Smart Materials
and Structures, Vol. 23, No. 6, 065022.
[36]. Xie, X., Li, P., Qin, H., Liu, L., and Nobes, D.C. (2013).
“GPR identification of voids inside concrete based on the
support vector machine algorithm”. Journal of
Geophysics and Engineering, Vol. 10, No. 3, 034002.
[37]. Zhu, J., Tsai, Y.T., and Kee, S.H. (2011). “Monitoring
early age property of cement and concrete using
piezoceramic bender elements”. Smart Materials and
Structures, Vol. 20, No. 11, 115014