References
[1]. Majid, A.S., de Paredes, E.S., Doherty, R.D., and
Sharma, N.R. (2003). “Missed breast carcinoma: pitfalls
and pearls”, Radiographics, 23: 881-95.
[2]. Kopans, D.B. (2002). “The positive predictive value of
mammography”, AJR Am J Roentgenol, 158: 521-6.
[3]. Kolb, T.M., Lichy J., and Newhouse, J.H. (2002).
“Comparison of the performance of screening
mammography, physical examination, and breast US
and evaluation of factors that influence them: an analysis
of 27,825 patient evaluations”, Radiology, 225:165-75.
[4]. Bird, R.E., Wallace, T.W., and Yankaskas, B.C. (1992).
“Analysis of cancers missed at screening
mammography”, Radiology, 184: 613-17.
[5]. Van Gils CH, Otten J.D., Verbeek A.L., Hendriks, J.H.,
and Holland, R. (1998). “Effect of mammographic breast density on breast cancer screening performance: a study
in Nijmegen, the Netherlands”, J Epidemiol Commun
Health, 52:267-71.
[6]. Cole, E.B., Pisano, E.D., Kistner, E.O., Muller, K.E.,
Brown, M.E., Feig, S.A., et.al (2003). “Diagnostic accuracy
of digital mammography in patients with dense breasts
who underwent problem solving mammography: effects
of image processing and lesion type”. Radiology,
226:153-60.
[7]. American Cancer Society. (1998). ”Cancer facts and
figures“, Atlanta, GA: American Cancer Society.
[8]. Sampat, P.M., Markey, M.K., and Bovik, A.C. (2005).
“Computer-aided detection and diagnosis in
mammography”, In: Bovik AC, editor. Academic Press,
1195-217.
[9]. Markey, M.K., Lo, J.Y., and Floyd, C.E., Jr. (2002).
“Differences between computer-aided diagnosis of
breast masses and that of calcifications”. Radiology
223:469-93.
[10]. Cheng, H.D., Cai, X., Chen, X., Hu, L., and Lou, X.
(2003). “Computer-aided detection and classification of
mic RS Calcifications in mammograms: a survey”. Pattern
Recognition 36:2967-91.
[11]. Wu, Y., Giger, M.L., Doi, K., Vyborny, C.J., Schmidt,
R.A., and Metz, C.E. (1993). “Artificial neural networks in
mammography: application to decision making in the
diagnosis of breast cancer”. Radiology 187:81-7.
[12]. Baker, J.A., Kornguth, P.J., Lo, J.Y., and Floyd, C.E.
(1996). “Artificial neural network: improving the quality of
breast biopsy recommendations”. Radiology 198:131-5.
[13]. Lo, J.Y., Baker, J.A., Kornguth, P.J., Iglehart, J.D.,
Floyd, C.E. (1997). “Predicting breast cancer invasion with
artificial neural networks on the basis of mammographic
features”, Radiology 203:159-63.
[14]. Shen, L., Rangayyan, R.M., Desautels, J.E.L. (1994).
“Application of shape analysis to mammographic
calcifications”, IEEE Trans Med Imaging, 13:263-74.
[15]. Jiang, Y., Nishikawa, R.M., Wolverton, D.E., Metz,
C.E., Giger, M.L., Schmidt, R.A., et.al (1996). “Malignant
and benign clustered micRSCalcifications: automated
feature analysis and classification”, 198:671-8.
[16]. Chan, H.P., Sahiner, B., Lam, K.L., Helvie, M.A., and
Goodsitt (1998). 'Computerized analysis of
mammographic micRSCalcifications in morphological
and structural feature spaces'. Med Phys 25:2007–19.
[17]. Tsujii, O., Freedman, M.T., and Mun, S.K. (1999).
“ Classification of microcalcifications in digital
mammograms using trend-oriented radial basis function
neural network”, Pattern Recognition 32:891-903.
[18]. Veldkamp, W.J.H., Karssemeijer, N., Otten, J.D.M.,
and Hendriks, J.H.C.L. (2000). “Automated classification
of clustered micRSCalcifications into malignant and
benign types”. Med Phys 27:2600-8.
[19]. Markopoulos, C., Kouskos, E., Koufopoulos, K.,
Kyriakou, V., and Gogas, J. (2001). “Use of artificial neural
networks (computer analysis) in the diagnosis of
micRSCalcifications on mammography”, 37:60-5.
[20]. Verma, B., and Zakos, J.A. (2001). “Computer-aided
diagnosis system for digital mammograms based on
fuzzy-neural and feature extraction techniques”. IEEE
Trans Inform Technol Biomed 5:44-54.
[21]. De Santo, M., Molinara, M., Tortorella, F., and Vento,
M. (2003). “Automatic classification of clustered
micRSCalcifications by a multiple expert system”. Pattern
Recognition 36:1445-77.
[22]. Lee, S.K., Chung, P., Chang, C.I., Lo, C.S., Lee, T., and
Hsu, G.C. (2003). “ Classification of clustered
micRSCalcifications using a shape cognition neural
network”, Neural Netw 16:121-32.
[23]. Kallergi, M. (2004). “Computer-aided diagnosis of
mammographic microcalcification clusters”. Med Phys
31:314-26.
[24]. Wei, L., Yang, Y., Nishikawa, R.M., and Jiang, Y.
(2005). “A study on several machine-learning methods for
classification of malignant and benign clustered
microcalcifications”. IEEE Trans Med Imaging, 24:349-80.
[25]. Papadopoulos, A., Fotiadis, D.I., and Likas, A.
(2005). “Characterization of clustered microcalcifications
in digitized mammograms using neural networks and
support vector machines”. Artif Intell Med, 34:139-50.
[26]. Dhawan, A.P., Chitre, Y., and Kaiser-Bonasso, C.
(1996). “Analysis of mammographic micRSCalcifications using gray-level image structure features”. IEEE Trans Med
Imaging, 15:244-59.
[27]. Soltanian, H., Rafee, F., and Pourabdollah, D.
(2004). ”Comparison of multiwavelet, wavelet, Haralick,
and shape features for microcalcification classification in
mammograms”. Pattern Recognition, 35:1973-86.
[28]. Kramer, D., and Aghdasi, F. (1999). “Structural
analysis techniques for the classification of
microcalcifications in digitized mammograms”.
[29]. Sakka, E., Prentza, A., and Koutsouris, D. (2006).
”Classification algorithms for microcalcifications in
mammograms“, (review). Oncol Rep1049-56.
[30]. Veldkamp, W.J.H., and Karssemeijer, N. (1996).
”Influence of segmentation on classification of
microcalcifications in digital mammography ”. In:
th Proceedings of the 18 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society;
1996 October 31 – November 3. Amsterdam,
Netherlands: Institute of Electrical and Electronic
Engineers, Inc.
[31]. Paquerault, S., Yarusso, L.M., Papaioannou, J.,
Jiang, Y., and Nishikawa, R.M. (2004). “Radial gradient b
Ased segmentation of mammographic
microcalcifications” Observer evaluation and effect on
CAD performance. Med Phys 31:2644-57.
[32]. Thiele, D.L., Kimme-Smith, C., Johnson, T.D.,
McCombs, M., and Bassett, L.W. (1996). “Using tissue
structural in contiguous calcification clusters to predict
benign vs malignant outcomes”. Med Phys 23:549-55.
[33]. Sakellaropoulos, P., Costaridou, L., and
Panayiotakis, G. (1999). “An image visualization tool in
mammography”. Med Inform 24: 53-73.
[34]. Sakellaropoulos, P., Costaridou, L., and
Panayiotakis, G. (2000). “Using component technologies
for web based wavelet enhanced mammographic
image visualization”. Med Inform 25:171-81.
[35]. Sakellaropoulos, P., Costaridou, L., and
Panayiotakis, G. (2003). A” wavelet- based spatially
adaptive method for mammographic contrast
enhancement”. Phys Med Biol 44:787-803.
[36]. Costaridou, L., Sakellaropoulos, P., Skiadopoulos, S., and Panayiotakis, G. (2005). “Locally adaptive wavelet
contrast enhancement”. In: Costaridou L, editor. Medical
image analysis methods. Boca Raton, FL: Taylor & Francis
Group LCC,MCRC Press, 225-70.
[37]. Costaridou, L., Skiadopoulos, S., Karahaliou, A.,
Sakellaropoulos, P, and Panayiotakis G. (2005). ”On the
lesion specific enhancement hypothesis in
mammography”. In: Proceedings of 14th International
Conference of Medical Physics, ICMP; 2005 September
14-17; Nuremberg, Germany. Berlin, Germany:
Fachverlag Schiele & Schon GmbH.
[38]. Gonzalez, R.C., and Woods, R.E. editors. (2002).
“Digital image Processing”. Upper Saddle River, NJ:
Prentice-Hall, Inc.
[39]. Dudani, S.A (1976). The distance weighted nearest
neighbour rule. IEEE Trans Systems Man Cybern SMC-
6:325-7.
[40]. Ursin, G., Hovanessian-Larsen L., Parisky, Y.R., Pike,
M.C., Wu, A.H. (2005). Greatly increased occurrence of
breast cancers in areas of mammographically dense
tissue. Breast Cancer Res 2005; 7: R605-8.