References
[1]. Aldridge, K.D., and Yao, H. (2001). “Flow features of
natural convection in a parallelogrammic enclosure”, Int.
Comm. Heat Mass Transfer, 28 (7), 923-931.
[2]. Alleborn, N., Raszillier, H., and Durst, F. (1999). “Liddriven
cavity with heat and mass transport”, Int. J. Heat
Mass Transfer, Vol. 42, pp.833-853.
[3]. Arpaci, V.S., and Larsen, P.S. (1984). Convection Heat
Transfer, Prentice-Hall, 90.
[4]. Aydin, O., and Yang, W.J. (2000). “Mixed convection
in cavities with a locally heated lower wall and moving
sidewalls”, Numer. Heat Transfer, Part A., 37, 695-710.
[5]. Basak, T., Roy, S., and Balakrishnan, A.R. (2006).
“Effects of thermal boundary conditions on natural
convection flows within a square cavity”, Int. J. Heat Mass
Transfer, 49, 4525-4535.
[6]. Guo, G., Sharif, and M.A.R. (2004). “Mixed convection
in rectangular cavities at various aspect ratios with moving
isothermal sidewalls and constant flux heat source on the
bottom wall”, Int. J. of Thermal Sciences, Vol. 43, pp.465-
475.
[7]. Iwatsu, R., and Hyun, J.M. (1995). “Three-dimensional
driven cavity flows with a vertical temperature gradient”,
Int. J. Heat Mass Transfer, Vol. 38, pp.3319-3328.
[8]. Iwatsu, R., Hyun, J.M., and Kuwahara, K. (1992).
“Numerical simulation of flows driven by a torsionally
oscillating lid in a square cavity”, J. Fluids Eng., Vol. 114,
pp.143-149.
[9]. Iwatsu, R., Hyun, J.M., and Kuwahara, K. (1993).
“Mixed convection in a driven cavity with a stable vertical
temperature gradient”, Int. J. Heat Mass Transfer, Vol. 36,
pp.1601-1608.
[10]. Khanafer, K., and Chamkha, A.J. (1999). “Mixed convection flow in a lid-driven enclosure filled with a fluid
saturated porous medium”, Int. J. Heat Mass Transfer, Vol.
42, pp.2465-2481.
[11]. Kuhlmann, H.C., Wanschura, M., Rath, and H.J.
(1997). “Flow in two sided lid-driven cavities: nonuniqueness,
instabilities, and cellular structures”, J. Fluid
Mech., Vol. 336, pp.267-299.
[12]. Lee, S.C., and Chen, C.K. (1996). “Finite element
solutions of laminar and turbulent mixed convection in a
driven cavity”, Int. J. Numer. Methods Fluids, Vol. 23,
pp.47-64.
[13]. Mansour, R.B., and Viskanta, R. (1994). “Shearopposed
mixed convection flow heat transfer in a narrow
vertical cavity”, Int. J. Heat Fluid Flow, Vol. 15, pp.462-469.
[14]. Moallemi, M.K., and Jang, K.S. (1992). “Prandtl
number effects on laminar mixed convection heat
transfer in a lid-driven cavity”, Int. J. Heat Mass transfer,
Vol. 35, pp.1881-1892.
[15]. Mohammad, A.A., and Viskanta, R. (1991). Transient
low Prandtl number fluid convection in a lid-driven cavity,
Numer. Heat Transfer A., 19 (2), pp.187-205.
[16]. Mohammad, A.A., and Viskanta, R. (1992). “Laminar
flow and heat transfer in Rayleigh-Bernard convection with
shear”, Phy. Fluids A., 4, pp.2131-2140.
[17]. Mohammad, A.A., and Viskanta, R. (1994). “Flow
structures and heat transfer in a lid-driven cavity filled with
liquid gallium and heated from below”, Exp. Thermal Fluid Sci., 9, pp. 309-319.
[18]. Mohammad, A.A., and Viskanta, R. (1995). “Flow
and heat transfer in a lid-driven cavity filled with a stably
stratified fluid”, Appl. Math. Model, 19, 465-472.
[19]. Naylor, D., and Oosthuizen, P.H. (1994). “A numerical
study of free convective heat transfer in a parallelogramshaped
enclosure”, Int. J. Numer. Meth. Heat Fluid Flow,
Vol. 4, pp.553-559.
[20]. Oztop, H.F., and Dagtekin, I. (2004). “Mixed
convection in a two-sided lid-driven differentially heated
square cavity”, Int. J. Heat Mass Transfer, Vol. 47, pp.1761-
1769.
[21]. Prasad, A.K., and Koseff, J.R. (1996). “Combined
forced and natural convection heat transfer in a deep liddriven
cavity flow”, Int. J. Heat Fluid Flow, Vol. 17, pp.460-
467.
[22]. Seki, N., Fukusako, S., Yamaguchi, A. (1983). “An
experimental study of free convective heat transfer in
parallelogrammic enclosure”, ASME J. Heat Transfer, 105,
433-439.
[23]. Torrance, K., Davis, R., Eike, K., Gill, P., Gutman, D.,
Hsui, A., Lyons, S., and Zien, H. (1972). “Cavity flows driven
by buoyancy and shear”, J. Fluid Mech., Vol. 51, pp.221-
231.
[24]. Zienkiewicz, O.C., and Taylor, R.L. (2000). The finite
element method, 5 ed. Oxford: Butterworth-Heinemann.