Calculation of mode-coupling coefficient of symmetric/asymmetric waveguide Grating Structure

S. K. Raghuwanshi*, **
*-** Department of Electronics Engineering, Indian School of Mines, Dhanbad, India.
*** Department of Electronics Communication Engineering Institute. of Engineering & Industrial Technology Durgapur, India.
Periodicity:September - November'2010
DOI : https://doi.org/10.26634/jele.1.1.1200

Abstract

A “Bragg Grating is a periodic perturbation of the effective absorption coefficient or effective index of an optical wave guide. A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelength of light and transmits all others. This is achieved by adding a periodic variation to the refractive index of the fiber core. Several devices for wavelength division multiplexing (WDM) systems which utilize mode conversion in waveguides have been proposed and demonstrated. This paper demonstrates the calculation on mode coupling coefficient for the case of planar waveguide structures. We have carried out the computation for the mode coupling coefficient for the cases of degenerate as well as non-degenerate mode. Finally the interpretation of the results is carried out. The performance of FBG due to waveguide structure is predicted. We have to use FBG as a WDM component to accommodate the more number of channels. For this application we need to increase the reflection bandwidth of the reflectivity spectrum. We are also required to reduce the chirp induced in the phase spectrum due to mode coupling.  These all the performance parameters depend on the mode coupling coefficient. Hence; we try to optimize the coupling coefficient for the given cases. Finally the quantitative study has been carried out.

Keywords

Fiber Bragg grating, Planar Slab waveguide structure, Electromagnetic theory concepts, Mode coupling coefficient.

How to Cite this Article?

S. K. Raghuwanshi et.al (2010). Calculation Of Mode-Coupling Coefficient Of Symmetric/Asymmetric Waveguide Grating Structure. i-manager’s Journal on Electronics Engineering, 1(1), 52-58. https://doi.org/10.26634/jele.1.1.1200

References

[1]. D Marcuse, (2003). Theory of Dielectric Waveguides, 2nd Edition, New York: McGraw Hill Inc.
[2]. Jose M. Castro, David F. Geraghty, (2005). Opt. Express 13 (11), pp. 4180.
[3]. Hill, K.O. (1978)., Appl. Phys. Lett. 32, 647.
[4]. Meltz, G. (1989)., Opt. Lett. 14: 823.
[5]. William K. Burns and F. Milton, (1980). IEEE J. Quantum Electron. 16, 446.
[6]. C. Greiner, T.W. Mossberg and D. Iazikov, (2004). Opt. Lett. 29, 806.
[7]. R. Kashyap, (1999). Fiber Bragg gratings, Academic Press, San Diego, CA,
[8]. T. Erdogan and J.E. Sipe, (1996). J. Opt. Soc. Am. A 13, 293 Feb.
[9]. M. Castro, A. Sato, D. F. Geraghty, (2005). OFC Conference, California, March 6-11.
[10]. S. Tomlijenovic-Hanic and J.D. Love, (2003). Microw. Opt. Techn. Lett. 37, 163.
[11]. S K Raghuwanshi, (2010). Indian J of Phys, 84 (7), pp. 831.
[12]. M. Aslund, J. Canning, L. Poladian, C. Martijin de Sterke and A. Judge, (2003). Appl. Opt. 42, 6578.
[13]. A. S. Kewitsch, G. A. Rakuljic, P. A Willems and A. Yariv, (1998). Opt. Lett. 23, 106.
[14]. C. Riziotis and M. N. Zervas, (2001). IEEE J. Lightwave Technol. 19, 92.
[15]. J. M. Castro, D. F. Geraghty, B. West, Seppo Honkanen,(2004). Appl. Opt. 43, 6166.
[16]. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reeed, (1993). Electron. Lett. 29, 1191.
[17]. G. Meltz, W. W. Morey, and W. H. Glenn, (1989). Opt. Lett. 14, 823.
[18]. K. O. Hill and G. Meltz, (1997). J. Lightwave Technol. 15, 1263.
[19]. R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides (Fundamentals and Applications) (p. PD1, Postdeadline papers, Portland, OR, 1995).
[20]. A. Asseh, H. Storøy, B.E. Sahlgren, S. Sandgren, and R. Stubbe, (1997). IEEE J. Lightwave Tech. 15, 1419.
[21]. J.A.R. Williams, K.S.I. Bennion, and N.J. Doran,(1997). Electron. Lett. 30, 985.
[22]. I. Baumann, J. Seifert, W. Nowak, and M. Sauer,(1996). IEEE Photon. Technol. Lett. 8, 1331.
[23]. D. R. Hjelme, H. Storøy, and J. Skaar,(1998). In Trends Optics and Photonics Series 280 OSA.
[24]. A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C. G. Askins, M.A. Putnam, and E.J. Friebele, (1997). IEEE J. Lightwave Technol. 15, 1442.
[25]. J.T. Kringlebotn, J.L. Archambault, L. Reekie, and D. N. Payne, (1994). Opt. Lett. 19, 2101.
[26]. T. Erdogan, (1997). IEEE J. Lightwave Technol. 15, 1277
[27]. A. Othonos and K. Kalli, (1999). Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Boston: Artech House,
[28]. A.W. Snyder and J. D. Love, (1983). Optical Waveguide Theory, Chapman & Hall,
[29]. H. Kogelnik, (1976). Bell Sys.Tech. J. 55, 109.
[30]. L. Poladian, (1996). Phys. Rev. E 54, 2963.
[31]. H. Kogelnik, (1990). in Theory of Optical Waveguides, Guided-Wave Optoelectronics, T.Tamir, 2nd Edition, New York: Springer-Verlag,
[32]. L.A. Weller-Brophy and D. G. Hall, (1985). J. Opt. Soc. Am. A 11, 2027 .
[33]. R. Feced, M. N. Zervas, and M. A. Muriel, (1999). IEEE J. Quantum Electron. 35,1105
[34]. G.-H. Song, (1994). J. Opt. Soc. Am. A11, 2027.
[35]. L. Poladian (1997). Opt. Lett. 22, 1571.
[36]. G.H. Song and S.-Y. Shin, (1985). J. Opt. Soc. Am. A 2, 1905.
[37]. L. Poladian, (2000). Opt. Lett. 25, 787.
[38]. S K Raghuwanshi and S Talabattula,(2009). Indian J. Phys. 83 (2).
[39]. SK Raghuwanshi and S Talabattula, (2007). J. Instrum. Soc. India, 37(4), 297 Dec.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.