References
[1]. Bertoni, J. C., Tucci, C. E., and Clarke, R. T. (1992).
“Rainfall-based real-time flood forecasting” J. Hydrology,
Vol. 131, pp.313-339.
[2]. Campolo, M., Andreussi, P., and Soldati, A. (1999). “A
river flood forecasting with a neural network model”.
Water Resource Research, Vol. 35(4), pp.1191-1197.
[3]. Campolo, M., Soldati, A., and Andreussi, P. (2003).
“Artificial neural network approach to flood forecasting in
the River Arno.” Journal of Hydrology and Science, Vol.
48(3), pp.381-398.
[4]. Cigizoglu, H.K. (2002). “Filling missing suspended
sediment data by artificial neural networks:, Int. Conf. on
Computational Methods in Water Resources,
Netherlands, Elsevier, pp.1645-1652.
[5]. Cigizoglu, H.K. (2003). “Estimation, forecasting and
extrapolation of acceleration data by artificial neural
networks”, Journal of Hydrology and Science, Vol. 48(3),
pp.349-361.
[6]. Elshorbagy A, Simonovic, S P, and Panu, U.S. (2002).
“Estimation of missing stream flow data using principles of
chaos theory”, Journal of Hydrology, Vol. 255, pp.123-
133.
[7]. Fernando DAK, and Jayawardena A.W. (1998).
“Runoff forecasting using RBF networks with OLS
algorithm”, Journal of Hydrology and Engineering, Vol.
3(3), pp.203-209.
[8]. Freiwan, M. and Cigizoglu, H.K. (2005). “Prediction of
total monthly rainfall in Jordan using feed forward back
propagation method” Fresenius Environ Bull, Vol. 14(2),
pp.142-51.
[9]. Govindaraju, R. S. (2000a). Artificial neural network in
hydrology, I: Preliminary concepts. Journal of Hydrologic
Engineering, Vol. 5(2), pp.115-123.
[10]. Govindaraju, R. S. (2000b). Artificial neural network in
hydrology, II: Hydrological applications. Journal of
Hydrologic Engineering, Vol. 5(2), pp.124-137.
[11]. Hall, M.J, Minns, A.W. (1998), “Regional flood frequency analysis using Artificial Neural Networks”, Hydro
informatics conference, Denmark, Rotterdam, p. 759-
763.
[12]. Hawkin,S . (1994) . Neural networks -A
comprehensive foundation, Macmillan college
publishing company, NY.
[13]. Imrie, C. E., Durucan, S., and Korre, A. (2000). “River
flow prediction using artificial neural networks:
Generalization beyond the calibration range”. Journal of
Hydrology, Vol. 233, pp.138-153
[14]. Khalil M, Panu US, Lennox WC. (2001). Groups and
neural networks based streamflow data infilling
procedures. Journal of Hydrol, 241, pp.153-176.
[15]. Kheir El-Din KA. (1998). Neural network application
for modelling hydraulic characteristics of severe
construction. In, editors Babovic V, Larsen CL, Hydro
nd informatics conference. Proc. 2 vol., third international
conference on hydro informatics, Copenhagen,
Denmark. Rotterdam: A.A. Balkema, pp.771-775.
[16]. Kim, G. S., and Borros, A.P. (2001). “Quantitative flood
forecasting using multi sensor data and neural networks”.
Journal of Hydrology, 246, pp.45-62.
[17]. Lange, N. (1998). “Advantages of unit hydrograph
derivation by neural networks. Hydro informatics
conference. Denmark. Rotterdam, pp.783-789
[18]. Liong, S.Y., Lim, W. and Paudyal, G. N. (2000). “River
stage forecasting in Bangladesh: Neural network
approach”. Journal of Computation in Civ. Eng, Vol. 14(1),
pp.1-18.
[19]. McCulloch, W.S., and Pitts W. (1943). “A logical
calculus of the ideas imminent in nervous activity,” Bulletin
and Mathematical Biophysics, Vol. 5, pp.115-133
[20]. Metcalf Eddy. (1995). Wastewater Engineering,
Treatment, Disposal and Reuse, 5 Edition, McGraw Hill,
NY.
[21]. Minns AW, Hall MJ. (1996). “Artificial neural networks
as rainfall runoff models” HydrolSci Journal, Vol. 41(3),
pp.9-417.
[22]. Nasseri, M., Asghari, K., and Abedinid, M.J. (2008).
”Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network”, Expert
Systems with Applications, Vol. 35, pp.1415-1421.
[23]. Navone, H. D., and Ceccatto, H. A. (1994).
“Predicting Indian monsoon rainfall: A neural network
approach”, Climate Dynamics, Vol. 10, pp.305-312.
[24]. Rajurkar M. P., and Chaube U. C. (2002), “Artificial
neural networks for daily rainfall-runoff modeling”, Journal
of Hydrology Science, Vol. 47 (6), pp. 865–877.
[25]. Ray, C., Klindworth, K.K. (2000). “Neural networks for
agricultural vulnerability assessment of rural private wells”,
Journal of Hydrology and Engineering, Vol. 5 (2), pp.162-
171.
[26]. Rumelhart, D.E., Hinton, G.E., and Williams, R.J.
(1986). ”Learning internal representations by error
propagation” In: Rumelhart, D.E., McClelland, J.L. (Eds.),
Parallel Distributed Processing. MIT Press, Cambridge.
[27]. Sawyer, C. N., McCarty, P. L., and Parkin, G. F.
(1994).”Chemistry for Environmental Engineering”,
McGraw-Hill International Editions.
[28]. Shamseldin, A.Y. (1997). “Application of neural
network technique to rainfall-runoff modeling”, Journal of
Hydrology, Vol. 199, pp.272-294.
[29]. Shin, H. S., and Salas J.D. (2000). “Regional drought
analysis based on neural networks”, Journal of Hydrology
and Engineering, Vol. 5(2), pp.145-155.
[30]. Smith J., and Eli R.N. (1995). “Neural-network models
of rainfall runoff process.” Jr. Water Resource. Plan.
Manage.,Vol. 121(6), pp.499–508.
[31].Thandaveswara, B.S., Sajikumar, N. (2000).
“Classification of river basins using artificial neural
network”. Journal of Hydrology and Engineering, Vol. 5(3),
pp.290-298.
[32].Thirumalaiah, K., and Deo, M.C. (2000).
“Hydrological forecasting using artificial neural networks”,
Journal of Hydrologic Engineering, Vol. 5(2), pp.180-189.
[33]. Thirumalaiah, K., and Deo, M.C. (1998). “River stage
forecasting using artificial neural networks”, Journal of
Hydrologic Engineering, Vol. 3(1), pp.26-31.
[34]. Tokar, A. S., and Markus, M. (2000). “Precipitationrunoff
modeling using artificial neural networks and
conceptual models”, Journal of Hydrologic and
Engineering, Vol. 5(2), 156-161.
[35]. Tokar, AS., and Johnson, P.A. (1999). “Rainfall–runoff
modelling using artificial neural networks”, Journal of
Hydrology and Engineering, Vol. 4(3), pp.232-239.
[36]. Zealand, C. M., Burn, D. H., and Simonovic, S. P.
(1999). “Short term stream flow forecasting using artificial
neural networks”, Journal of Hydrology, Vol. 214, pp.32-
48.