Convection Boundary Layer Flow and Heat Transfer in an Eyring - Powell Fluid Past a Horizontal Circular Cylinder in Porous Medium

L. Nagaraja*, A. Subba Rao**, M. Sudhakar Reddy***, M. Suryanarayana Reddy****
* Research Scholar, Department of Mathematics, JNTU College of Engineering, Andhra Pradesh, India.
**-*** Assistant Professor, Department of Mathematics, Madanapalle Institute of Technology and Science, Andhra Pradesh, India.
**** Assistant Professor and Head, Department of Mathematics, JNTU College of Engineering, Andhra Pradesh, India.
Periodicity:January - March'2017
DOI : https://doi.org/10.26634/jmat.6.1.11399

Abstract

A mathematical model is developed to study laminar, nonlinear, non-isothermal, steady-state free convection boundary layer flow and heat transfer of a non-Newtonian Eyring - Powell fluid from a horizontal circular cylinder in porous media in the presence of a magnetic field. The transformed conservation equations for linear momentum, energy are solved numerically under physically viable boundary conditions using a finite difference scheme (Keller, Box method). The influence of dimensionless parameters, i.e. Eyring - Powell fluid parameter (ε), the local non-Newtonian parameter (δ), Prandtl number (Pr), dimensionless tangential coordinate (ξ), magnetic parameter (M), and temperature evaluation on velocity, temperature, skin friction, and Nusselt number are illustrated graphically, skin friction and Nusselt number are illustrated in tabular form. Validation of solutions with earlier published work is also included.

Keywords

Eyring- Powell Fluid, Porous Medium, MHD, Heat Transfer, Circular Cylinder.

How to Cite this Article?

Nagaraja, L., Rao, A.S., Reddy, M.S., and Reddy, M.S.N. (2017). Convection Boundary Layer Flow and Heat Transfer in an Eyring - Powell Fluid Past a Horizontal Circular Cylinder in Porous Medium. i-manager’s Journal on Mathematics, 6(1), 18-26. https://doi.org/10.26634/jmat.6.1.11399

References

[1]. S. Livescu, (2012). “Mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelines—A review”. J. Petroleum Science and Engineering, Vol.98, No.99, Vol.174–184.
[2]. J. Hron, J. Málek, P. Pustejovská, and K. R. Rajagopal, (2010). “On the Modeling of the Synovial Fluid”. Advances in Tribology, Vol. 2010, Article ID 104957, 12 pages.
[3]. F. Loix, L. Orgéas, C. Geindreau, P. Badel, P. Boisse, and J.-F. Bloch, (2009). “Flow of non-Newtonian liquid polymers through deformed composites reinforcements”. Composites Science and Technology, Vol.69, No.5, pp.612–619.
[4]. Viviane Kechichian, Gabriel P. Crivellari, Jorge A.W. Gut, and Carmen C. Tadini, (2012). “Modeling of continuous thermal processing of a non-Newtonian liquid food under diffusive laminar flow in a tubular system”. Int. J. Heat and Mass Transfer, Vol.55, No.21-22, pp.5783–5792.
[5]. Malik. M.Y, et al., (2015). “Mixed convection flow of MHD Eyring-Powell nano fluid over a stretching sheet-A numerical study”. AIP Advances , Vol.5 , No.11, pp.1-13.
[6]. Abdul Gaffar. S, Ramachandra Prasad. V, and Keshava Reddy. E, (2015). “Computational study of non-Newtonian Eyring-powell fluid from a horizontal circular cylinder with biot number effects”. International Journal of Mathematical Archive Vol.6, No.9, pp.114-132.
[7]. Hayder Ibrahim Mohammed, et al., (2013). “Comparison between Two Vertical Enclosures Filled with Porous Media under the Effect of Radiation and Magnetohydrodynamics”. Journal of Energy and Power Engineering, Vol. 8, No.1, pp.37-49.
[8]. Rashidi. M.M, Mohamed et al., (2016). “Entropy Generation on MHD Casson Nano-fluid Flow over a Porous Stretching/Shrinking Surface”. Entropy, Vol.18, No.4, pp.1-14.
[9]. Abdul Hakeem. A.K, Vishnu Ganesh., and N Ganga. B, (2015). “Heat transfer of non-Darcy MHD flow of nano-fluid over a stretching/shrinking surface in a thermally stratified medium with second order slip model”. Scientia Iranica F, Vol.22, No.6, pp.2766-2784.
[10]. Animasaun. I.L, Raju. C.S.K, and Sandeep. N, (2016). “Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation”. Alexandria Engineering Journal, Vol.55, No.2, pp.1595–1606.
[11]. Subba Rao. A, Ramachandra Prasad. V, Nagendra. N, Bhaskar Reddy. N, and Anwar Beg. O, (2016). “Non-Similar Computational Solution for Boundary Layer Flows of Non-Newtonian Fluid from an Inclined Plate with Thermal Slip”. Journal of Applied Fluid Mechanics, Vol.9, No.2, pp.795-807.
[12]. Bear, J., (1988). Dynamics of Fluids in Porous Media. Dover, New York.
[13]. Bejan, A., and Khair. K.R., (1985). “Heat and mass transfer by natural convection in a porous medium”. Int. J. Heat Mass Transfer, Vol. 28, No.5, pp. 909-918.
[14]. Lai, F.C., and Kulacki. F.A., (1991). “Coupled heat and mass transfer by natural convection from vertical surface in porous medium”. Int. J. Heat Mass Transfer, Vol. 34, No.4-5, pp.1189-1194.
[15]. Murthy, P.V.S.N., and Singh. P., (1999). “Heat and mass transfer by natural convection in a non-Darcian porous medium”. Acta Mechanica, Vol.138, No.3, pp.243-254.
[16]. Bég. O.A., Bakier, A.Y., and Prasad. V.R., (2009). “Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects”. Computational Materials Science, vol. 46, No.1, pp. 57-65.
[17]. Bég, O.A., Takhar. H. S., Bharagava. R., Rawat, S., and Prasad, V.R., (2008). “Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcian porous media with thermophysical effects”. Physica Scripta, Vol.77, No.6, pp.1-11.
[18]. Bég, O.A., Tasveer A. Bég, Takhar. H S., and Raptis. A., (2004). “Mathematical and Numerical Modeling of non-Newtonian Thermo - hydrodynamic flow in Non-Darcy Porous Media”. Int. J. Fluid Mechanics Research, Vol.31, No.1, pp.1-12.
[19]. Bég, O.A., Bhargava. R., Rawat. S., Takhar. H.S., and Bég. T.A., (2007). “A study of buoyancy driven dissipative micropolar free convection heat and mass transfer in a Darcian porous medium with chemical reaction”. Nonlinear Analysis: Modeling and Control J., Vol.12, No.2, pp.157-180.
[20]. Zueco, J., and Anwar Bég. O, (2009). “Network simulation solutions for laminar radiating dissipative magneto-gas dynamic heat transfer over a wedge in non-Darcian porous regime”. Mathematical and Computer Modelling, Vol.50, No.3-4, pp.439-452.
[21]. Bég, O.A., Makinde. O.D., Zueco. J., and Ghosh. S.K., (2012a). “Hydromagnetic viscous flow in a rotating annular highporosity medium with nonlinear Forchheimer drag effects: Numerical study”. World J. Modelling and Simulation, Vol.8, No.2, pp.83-95.
[22]. Bég, O.A., (2012b). “Numerical methods for multi-physical magneto hydrodynamics”. In Maximiano J. Ibragimov and Miroslava A. Anisimov Eds., New Developments in Hydrodynamics Research, Nova Science, New York, Ch. 1, pp. 1-110,
[23]. Subba Rao A, and Nagendra N., (2015). “Thermal radiation effects on Oldroyd-B Nano fluid from a stretching sheet in a non-Darcy porous medium”. Global J. Pure and Applied Mathematics, Vol.11, No.2, pp.45-49.
[24]. Subba Rao A, Prasad V.R, Harshavall K, and Anwar Bég. O, (2016). “Thermal radiation effects on non-Newtonian fluid in a variable porosity regime with partial slip”. J. Porous Media, Vol.19, No.4, pp.313-329,
[25]. Rojas, J.A., and Santos, K., (2011). “Magnetic Nanophases of Iron Oxide Embedded in Polymer: Effects of Magneto hydrodynamic Treatment of Pure and Wastewater”. 5th Latin American Congress on Biomedical Engineering CLAIB, Habana, Cuba, pp.16-21.
[26]. Yonemura H, Takata M, and Yamada, S., (2014). “Magnetic field effects on photoelectrochemical reactions of electrodes modified with thin films consisting of conductive polymers”. Japanese J. Appl. Phys., Vol.53, No.1S.
[27]. Stepanov G.V., Abramchuk S.S., Grishin D.A., Nikitin L.V., E. Yu Kramarenko, and Khokhlov A.R., (2007). “Effect of a homogeneus magnetic field on the viscoelastic behavior of magnetic elastomers”. Polymer, Vol.48, No.2, pp.488–495.
[28]. Bég T.A, Bég O.A, Rashidi M.M, and Asadi M., (2012). “Homotopy semi-numerical modelling of nanofluid convection flow from an isothermal spherical body in a permeable regime”. Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom., Vol. 3, No.4, pp.237–266.
[29]. Muhammad Raheel Mohyuddin, Jamshaid ul Rahman, Syed Zahoor, and Naveed Anjum, (2015). “Mathematical Modeling & Simulation of Mixing of Salt in 3- Interconnected Tanks”. Journal of Advances in Civil Engineering, Vol.1, No.1, pp.1-7.
[30]. Muhammad Raheel Mohyuddin, Jamshaid ul Rahman, Syed Zahoor, SV, and Amira, (2016). “Mathematical and Simulink Model for Paint Industry Effluent”. Journal of Engineering Chemistry and Fuel, Vol.1, No.2, pp.1-8.
[31]. J.I. Siddique, A. Landis, Muhammad, R., and Mohyuddin, (2014). “Dynamics of Drainage of Power-Law Liquid into a Deformable Porous Material”. Open Journal of Fluid Dynamics, Vol.4, No.4, pp.403-414.
[32]. Asghar, S., Muhammad R. Mohyuddin, and Hayat, (2005). “Effects of Hall current & heat transfer on flow due to a pull of eccentric rotating disks”. International Journal of Heat and Mass Transfer, Vol.48,No.3-4, pp. 599-607.
[33]. Muhammad R. Mohyuddin, and T. Gotz, (2005). “Resonance behavior of viscoelastic fluid in Poiseuille flow in the presence of a transversal magnetic field”. International Journal for Numerical Methods in Fluids, Vol.49, No.8,pp.837-847.
[34]. R.E. Powell, and H. Eyring, (1944). “Mechanisms for the Relaxation Theory of Viscosity”. Nature, Vol.154, No.3909, pp.427-428.
[35]. Cebeci T., and Bradshaw P., (1984). Physical and Computational Aspects of Convective Heat Transfer. Springer, New York.
[36]. Keller H.B., (1970). “A New Difference Method for Parabolic Problems”. In J. Bramble (Editor), Numerical Methods for Partial Differential Equations Academic Press, New York, USA.
[37]. Subba Rao A, Prasad V.R, Nagendra N, Murthy K.V.N, Reddy N.B, and Beg O.A., (2015). “Numerical Modeling of Non- Similar Mixed Convection Heat Transfer over a Stretching Surface with Slip Conditions”. World Journal of Mechanics, Vol.5 pp.117- 128.
[38]. Ramachandra Prasad V, Subba Rao, A, and Anwar Bég O, (2013). “Flow and Heat Transfer of Casson Fluid from a horizontal Circular Cylinder with Partial Slip in non-Darcy porous Medium”. Journal of Applied & Computational Mathematics, Vol. 2,No.2, pp.1-12.
[39]. V Ramachandra Prasad, A Subba Rao, N Bhaskar Reddy, B Vasu, and O Anwar Bég, (2012). “Modelling laminar transport phenomena in a Casson rheological fluid from a horizontal circular cylinder with partial slip”. J. Process Mechanical Engineering, Vol.227, No.4, pp. 309–326.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.