References
[1]. B. Boussahoua and M. Boudour, (2011). “Power
System Transient Stability Robust Control using Fuzzy Logic
PSS and Genetic Algorithm”. Journal of Electrical
Engineering, Vol.11, No.2, pp.79-83.
[2]. R. Vijaya Shanthi and D. Krishna Priya, (2011).
“Modeling of a SMIB Power System- A Systematic
Approach of PSO with the Dual Input Power System
Stabilizer”. Journal of Electrical Engineering, Vol.11, pp.
18-23.
[3]. M. Aoki, (1968). “Control of Large-Scale Dynamic
System by Aggregation”. IEEE Trans. on Automatic
Control. Vol.13, No.3, pp.246-253.
[4]. Y. Shamash, (1974). “Stable Reduced Order Models
using Pade Type Approximations”. IEEE Trans. On Automatic Control. Vol.19, No.5, pp.615-616.
[5]. M. F. Hutton and B. Friendland, (1999). “Routh
Approximations for Reducing Order of Linear Time-varying
System”. IEEE Trans. on Automatic Control, Vol.44,
pp.1782-1787.
[6]. N.K. Sinha, B. Kuszta, and Van Nostrand Reinhold,
(1983). “Modeling and Identification of Dynamic
Systems”. AIChE Journal, Vol.31, No.6, pp.133-136.
[7]. V. Krishnamurthy and V. Seshadri, (1978). “Model
Reduction using the Routh Stability Criterion”. IEEE Trans. on
Automatic Control, Vol.23, No.4, pp.729-731.
[8]. K. Glover, (1984). “All optimal Hankel-Norm
Approximations of Linear Multivariable Systems and their
L,? - Error Bounds”. Int. J. Control. Vol.39, pp.1115-1193.
[9]. C. Hwang, (1984). “Mixed Method of Routh and ISE
Criterion Approaches for Reduced Modeling of
Continuous Time Systems”. Trans ASME J. Dyn. Syst. Meas.
Control, Vol.106, pp.353-356.
[10]. N. N., Puri and D. P. Lan, (1988). “Stable Model
Reduction by Impulse Response Error Minimization using
Mihailov Criterion and Pade's Approximation”. Trans ASME
J Dyn. Syst. Meas. Control, Vol.110, pp.389-394.
[11]. P., Vilbe and L.C. Calvez, (1990). “Order Reduction of
Linear Systems using an Error Minimization Technique”.
Journal of Franklin Inst., Vol.327, pp.513-514.
[12]. A. K. Mittal, R. Prasad, and S. P. Sharma, (2004).
“Reduction of Linear Dynamic Systems using an Error
Minimization Technique”. Journal of Institution of
Engineers, IE (I) Journal–EL, Vol.84, pp.201-206.
[13]. M. J. Bosley, and , F. P. Lees, (1978). “A Survey of
Simple Transfer Function Derivations from High Order State
Variable Models”. Automatica, Vol.8, pp.765-775.
[14]. R.K. Appiah, (1978).“Linear Model Reduction using
Hurwitz Polynomial Approximation”. Int. J. Control. Vol.28,
pp.477-488.
[15]. T.C. Chen, C.Y. Chang, and K.W. Han, (1979).
“Reduction of Transfer Functions by the Stability Equation
Method”. Journal of Franklin Institute, Vol.308, pp.389-
404.
[16]. P.O. Gutman, C.F. Mannerfelt, and P. Molander, (1982). “Contributions to the Model Reduction Problem”.
IEEE Trans. on Automatic Control, Vol.27, pp.454- 455.
[17]. T.C. Chen, C.Y Chang, and K.W. Han, (1980). “Model
Reduction using the Stability-Equation Method and the
Pade Approximation Method”. Journal of Franklin
Institute, Vol.319, pp.473-490.
[18]. V. Singh, D. Chandra, and H. Kar, (2004). “Improved
Routh-Pade Approximants: A Computer-Aided Approach”.
IEEE Trans. on Automatic Control, Vol.49, pp.292-296.
[19]. C. F. Chen, (1974). “Model Reduction of Multivariable
Control Systems by Means of Matrix Continued Fraction”.
Int. J. Control, Vol.20, pp.225-238.
[20]. L. S. Shieh and Y. J. Wei, (1975). “A Mixed Method for
Multivariable System Reduction”. IEEE Trans. on Automatic
Control, Vol.20, pp.429-432.
[21]. A.V. Agarwal and A. Mittal, (2008).“A reduction of
large scale linear MIMO Systems using Eigen Spectrum
Analysis and CFE Form”. Proceedings of 32rd National
Systems Conference (NSC), pp.606-611.
[22]. Y. Shamash, (1975). “Multivariable System Reduction
via Modal Methods and Pade Approximation”. IEEE Trans.
on Automatic Control, Vol.20, pp.815-817.
[23]. R. Prasad, S.P. Sharma and A. K. Mittal, (2003).
“Improved Pade Approximants for Multivariable Systems
using Stability Equation Method”. Institution of Engineers
India IE (I) Journal- EL, Vol.84, pp.161-165.
[24]. C. M. Liaw, (1988). “Mixed Method of Model
Reduction for Linear Multivariable Systems”. International
Journal of Systems Science, Vol.20, pp.2029-2041.
[25]. C. B. Vishwakarma and R. Prasad, (2008). “Order
Reduction using the advantages and Differentiation
Method and Factor Division Algorithm”. Indian Journal of
Engineering and Material Sciences, Vol.15, pp.447-451.
[26]. N. Habib, and R. Prasad, (2008). “An Observation on
the Differentiation and Modified Cauer Continued
Fraction Expansion Approaches of Model Reduction
Technique”. Proceedings of 32rd National Systems
Conference (NSC), pp.574-579.
[27]. S. S. Lamba, R.Gorez, and B. Bandyopadhyay,
(1988). “New Reduction Technique by Step Error
Minimization for Multivariable System”. International
Journal of Systems Science, Vol.19, pp.999-1009.
[28]. S. Mukherjee, and R. N. Mishra, (1988). “Reduced
Order Modeling of Linear Multivariable Systems using an
Error Minimization Technique”. Journal of the Franklin
Institute, Vol.325, pp.235-245.
[29]. U. Salma and K. Vaisakh, (2015). “Application and
Comparative Analysis of various Classical and Soft
Computing Techniques for Model Reduction of MIMO
Systems”. Intelligent Industrial System, Vol.1, pp.313-30.
[30]. R.J. Lakshmi, P.M. Rao, and Ch. V. Chakravarti, (2010). “A
Method for the Reduction of MIMO Systems using Interlacing
Property and Coefficients Matching”. International Journal of
Computer Applications, Vol.1, pp.14-17.
[31]. G. Parmar, S. Mukherjee and R. Prasad, (2007).
“Reduced Order Modeling of Linear MIMO Systems using
Genetic Algorithm”. International Journal of Simulation
Modeling, Vol.6, pp.173-184.