References
[1]. Abu-Sharkh B.F., (2001). “Glass transition temperature
of poly (vinylchloride) from molecular dynamics
simulation: Explicit atom model versus rigid CH and CHCl groups model”. Comput. Theor. Polym. Sci., Vol. 11, pp.
29–34.
[2]. Alcor Life Extension Foundation, (2000). Alcor: The
origin of our Name. Retrieved on 2013-04-12.
[3]. Angell C.A., K.L. Ngai, G.B. Mackenna, P.F. McMillan,
and S.W. Martin, (2000). “Relaxation in glass forming
liquids and amorphous solids”. J. Appl. Phys., Vol. 88, pp.
3113–3157.
[4]. Angell C.A., and W. Sichina, (1976). “Thermodynamics
of the glass transition: Empirical aspects”. In M. Goldstein,
R. Simha (Eds.), The Glass Transition and the Nature of the
Glassy State. Annals of the New York Academy of
Sciences, pp. 53–67.
[5]. Crowe J.H., J.F. Carpenter, and L.M. Crowe, (1998).
“The role of vitrification in an hydrobiosis”. Annu. Rev.
Physiol., Vol. 60, pp. 73–103.
[6]. Dimitrov V.I., (2006). “Theory of fluidity of liquids, glass
transition, and melting”. J. Non-Cryst. Solids, Vol. 352, pp.
216–231.
[7]. Fahy, G.M., Vitrification, in: J.J. McGrath, and K.R.
Diller, (1988). “Low Temperature Biotechnology:
Engineering Applications and Engineering Contributions”.
The American Society of Mechanical Engineers, pp.
113–146, New York.
[8]. Grunina N.A., T.V. Belopolskaya, and G.I. Tsereteli,
(2006). “DSC study the glass transition process in humid
biopolymers”. J. Phys. Conference Series, Vol. 40, pp.
105–110.
[9]. Gumen V.R., F.R. Jones, and D. Attwood, (2001).
“Prediction of the glass transition temperatures for epoxy
resins and blends using group interaction modeling”.
Polymer, Vol. 42, pp. 5717–5725.
[10]. Jabbarzadeh A. and R. I. Tanner, (2006). “Molecular
Dynamics Simulation and its Application in Nano-
Rheology”. In Ed. M. Bindings and K. Walters: Rheology
Reviews, pp. 165-216.
[11]. Jochem M., and C.H. Korber, (1987). “Extended
phase diagrams for the ternary solutions H O–NaCl– 2
glycerol and H O–NaCl–hydroxyethyl starch determined 2
by DSC”. Cryobiology, Vol. 24, pp. 513–536.
[12]. Karl G.W., M. Martin, K. Andreas, and Z. Gerhard,
(2005). “Glass transition temperature of a cationic
polymethacrylate dependent on the plasticizer contentsimulation
vs. experiment”. Chem. Phys. Lett., Vol. 406,
pp. 90–94.
[13]. Katkov I., and F. Levine, (2004). “Prediction of the
glass transition temperature of water solutions:
Comparison of different models”. Cryobiology, Vol. 49,
pp. 62-82.
[14]. Kurt B., B. Jorg, and W. Paul, (2003). “Glass transition
of polymer melts: Test of theoretical concepts by
computer simulation”. Prog. Polym. Sci., Vol. 28, pp.
115–172.
[15]. Li Dai-Xi, Bao-Lin Liu, Yi-shu Liu, and Cheng-lung
Chen, (2008). “Predict the glass transition temperature of
glycerol-water binary cryoprotectant by molecular
dynamics simulation”. Cryobiology, Vol. 56, No. 2, pp.
114-119.
[16]. Loura Luís M.S., and J.P. Prates Ramalho, (2011).
“Recent Developments in Molecular Dynamics
Simulations of Fluorescent Membrane Probes”.
Molecules, Vol. 16, pp. 5437-5452.
[17]. Park Sanghyun, and Klaus Schulten Beckman,
(2004). “Calculating potentials of mean force from
steered molecular dynamics simulations”. Journal of
Chemical Physics, Vol. 120, No. 13, pp. 5946-5961.
[18]. Paul Lakra, and Geoffrey Planer, (2009). “Right Cell,
Right Result with Controlled-rate Freezing”. Pathology in
Practice.
[19]. Rall, W.F., and G.M. Fahy, (1975). “Ice-free
o cryopreservation of mouse embryos at –196 C by
vitrification”. Nature, Vol. 313, pp. 573–575.
[20]. Strillinger F.H., (1995). “A topographic view of
supercooled liquids and glass formation”. Science, Vol.
267, No. 5206, pp. 1935–1939.
[21]. Trzesniak Daniel, and Wilfred F. Van Gunsteren,
(2006). “Catalytic mechanism of cyclophilin as observed
in molecular dynamics simulations: Pathway prediction
and reconciliation of X-ray crystallographic and NMR
solution data”. Protein Sci., Vol. 15, No. 11, pp. 2544–2551.