References
[1]. I.A. Choudhury, and M.A. El-Baradie, (1998).
“Machinability of nickel-base super alloys: A general
review”. Journal of Materials Processing Technology, Vol.
77, No. 1-3, pp. 278-284.
[2]. A. Thakur, and S. Gangopadhyay, (2016). “State-ofthe-
art in surface integrity in machining of nickel-based super alloys”. International Journal of Machine Tools and Manufacture, Vol. 100, No. 1, pp. 25-54.
[3]. F. Klocke, D. Welling, A. Klink, D. Veselovac, T. Nothe,
and R. Perez, (2014). “Evaluation of Advanced Wire-EDM
Capabilities for the Manufacture of fir tree slots in Inconel
718”. Procedia CIRP, Vol. 14, No. 1, pp. 430-435.
[4]. H. Dong, Y. Liu, Y. Shen, and X. Wang, (2016).
“Optimizing Machining Parameters of Compound
Machining of Inconel 718”. Procedia CIRP, Vol. 42, No. 1,
pp. 51-56.
[5]. T. R. Newton, S. N. Melkote, T. R. Watkins, R. M. Trejo, and
L. Reister, (2009). “Investigation of the effect of process
parameters on the formation and characteristics of recast
layer in wire-EDM of Inconel 718”. Materials Science and
Engineering A, Vol. 513-514, No. 1, pp. 208-215.
[6]. B. B. Nayak, and S. S. Mahapatra, (2016).
“Optimization of WEDM process parameters using deep
cryo-treated Inconel 718 as work material”. Engineering
Science and Technology, Vol. 19, No. 1, pp. 161-170.
[7]. V. Aggarwal, S. S. Khangura, and R. K. Garg, (2015).
“Parametric modeling and optimization for wire Electrical
Discharge Machining of Inconel 718 using Response
Surface Methodology”. International Journal of Advanced
Manufacturing Technology, Vol. 79, No. 1, pp. 31-47.
[8]. S. Rajesha, A. K. Sharma, and P. Kumar, (2012). “On
Electro Discharge Machining of Inconel 718 with Hollow
Tool”. Journal of Materials Engineering and Performance,
Vol. 21, No. 6, pp. 882-891.
[9]. E. Bassoli, L. Denti, A. Gatto, and L. Luliano, (2016).
“Influence of electrode size and geometry in Electrodischarge
drilling of Inconel 718”. International Journal of
Advanced Manufacturing Technology, DOI: 10.1007/s
00170-016-8339-4, Vol. 86, No. 5, pp. 1-9.
[10]. R. Ramakrishnan, and L. Karunamoorthy, (2009).
“Performance studies of Wire Electro Discharge Machining
(WEDM) of Inconel 718”. International Journal of Materials
and Product Technology, Vol. 35, No. 1-2, pp. 199–215.
[11]. P. Kuppan, A. Rajadurai, and S. Narayanan, (2008).
“Influence of EDM process parameters in deep hole drilling
of Inconel 718”. International Journal of Advanced
Manufacturing Technology, Vol. 38, No. 1, pp. 74–84.
[12]. H. S. Liu, B. H. Yan, F. Y. Huang, and K. H. Qiu, (2005). “A
study on the characterization of high nickel alloy microholes
using micro-EDM and their applications”. Journal of
Material Processing Technology, Vol. 169, No. 1, pp.
418–426.
[13]. E. O. Ezugwu, D. A. Fadare, J. Bonney, R. B. D. Silva,
and W. F. Sales, (2005). “Modelling the correlation between
cutting and process parameters in high-speed machining
of Inconel 718 alloy using an Artificial Neural Network”.
International Journal of Machine Tools and Manufacture,
Vol. 45, No. 12–13, pp. 1375–1385.
[14]. D. K. Aspinwall, S. L. Soo, A. E. Berrisford, and G.
Walder, (2008). “Workpiece surface roughness and
integrity after WEDM of Ti–6Al–4V and Inconel 718 using
minimum damage generator technology”. CIRP Annals-
Manufacturing Technology, Vol. 57, No. 1, pp. 187–190.
[15]. S. Jeelani, and M. Collins, (1988). “Effect of Electric
Discharge Machining on the fatigue life of Inconel 718”.
International Journal of Fatigue, Vol. 10, No. 2, pp. 121-125.
[16]. L. Li, Y. B. Guo, X. T. Wei, and W. Li, (2013). “Surface
Integrity Characteristics in Wire-EDM of Inconel 718 at
different discharge energy”. Procedia CIRP, Vol. 6, No. 1,
pp. 220-225.
[17]. Anderson MJ, and Whitcomb PJ. (2016). RSM
Simplified: Optimizing Processes using Response Surface
Methods for Design of Experiments, 2nd ed. New York:
Productivity Press.
[18]. Kalpakjian S, and Schmid SR. (2008). “Materialremoval
processes: Abrasive, chemical, electrical, and
high-energy beams”. In Manufacturing Processes for
Engineering Materials, 5th ed. Pearson Education, pp.
561–565.
[19]. R. Ramakrishnan, and L. Karunamoorthy, (2008).
“Modeling and multi-response optimization of Inconel 718
on machining of CNC WEDM process”. Journal of Materials
Processing Technology, Vol. 207, No. 1-3, pp. 343–349.
20]. M. Lin,C. Tsao, C. Hsu, A. Chiou, P. Huang, and Y. Lin,
(2013). “Optimization of micro milling Electrical Discharge
Machining of Inconel 718 by Grey-Taguchi method”.
Transactions of Nonferrous Metals Society of China, Vol. 23,
No. 3, pp. 661-666.
[21]. G. E. P. Box, and K. B. Wilson, (1951). “On the
experimental attainment of optimum conditions”. Journal
of the Royal Statistical Society - Series B (Methodological),
Vol. 13, No. 1, pp. 1–45.
[22]. G. Derringer, and R. Suich, (1980). “Simultaneous
optimization of several response variables”. Journal of
Quality Technology, Vol. 12, No. 1, pp. 214–219.
[23]. G.E.P. Box, and J.S. Hunter, (1957). “Multi-Factor
Experimental Designs for Exploring Response Surface”. The
Annals of Mathematical Statistics, Vol. 28, No. 1, pp.
195–241.
[24]. Montgomery DC. (2004). Design and Analysis of
Experiments, 8th ed. New York: Wiley.
[25]. D. DiBitonto, P. T. Eubank, M. R. Patel, and M. A.
Barrufet, (1989). “Theoretical models of the Electrical
Discharge Machining Process I: A simple cathode erosion model”. Journal of Applied Physics, Vol. 66, No. 9, pp.
4095-4103.
[26]. M. Kiyak, B. E. Aldemir, and E. Altan, (2015). “Effects of
discharge energy density on wear rate and surface
roughness in EDM”. International Journal of Advanced
Manufacturing Technology, Vol. 79, No. 1, pp. 513-518.
[27]. R. Das, M. K. Pradhan, and C. Das, (2013). “Prediction
of surface roughness in Electrical Discharge Machining of
SKD11 Tool steel using Recurrent Elman Networks”. Jordan
Journal of Mechanical and Industrial Engineering, Vol. 7,
No. 1, pp. 97-104.
[28]. J. Anitha, R. Das, and M. K. Pradhan, (2016). “Multi-
Objective Optimization of Electrical Discharge Machining
Processes using Artificial Neural Network”. Jordan Journal of
Mechanical and Industrial Engineering, Vol. 10, No. 1, pp.
11-18.