References
[1]. Ahmadi-Nedushan, B. (2012). “Prediction of Elastic
Modulus of Normal and High Strength Concrete Using ANFIS
and Optimal Nonlinear Regression Models”. Construction
and Building Materials, Vol. 36, pp. 665-673.
[2]. Bahari, A., Sadeghi-Nik, A., Roodbari, M., Taghavi, K.,
and Mirshafiei, S. E. (2012). “Synthesis and Strength Study of
Cement Mortars containing SiCnano Particles”. Digest
Journal of Nanomaterials & Biostructures, Vol. 7, No. 4,
pp.1427-1435.
[3]. Deshpande, N., Londhe, S., and Kulkarni, S. (2014).
“Modeling Compressive Strength of Recycled Aggregate
Concrete by Artificial Neural Network, Model Tree and Nonlinear
Regression”. International Journal of Sustainable Built
Environment, Vol. 3, No. 2, pp. 187-198.
[4]. Diab, A.M., Elyamany, H.E., Elmoaty, A.E.M.A., and
Shalan, A.H. (2014). “Prediction of Concrete Compressive
Strength due to long term Sulfate Attack using Neural
Network”. Alexandria Engineering Journal, Vol. 53, No. 3,
pp. 627-642.
[5]. Duan, Z.H., Kou, S.C., and Poon, C.S., (2013). “Using Artificial Neural Networks for predicting the Elastic Modulus
of Recycled Aggregate Concrete”. Construction and
Building Materials, Vol. 44, pp. 524-532.
[6]. Haario, H., Taavitsainen, V.M., and Jokinen, P.A., (1990).
“A Chemometrics/Statistics/Neural Networks toolbox for
MATLAB”. Data Handling in Science and Technology, Vol. 6,
pp. 133.
[7]. Kafi, M.A., Sadeghi-Nik, A., Bahari, A., Sadeghi-Nik, A.,
and Mirshafiei, E. (2016). “Microstructural Characterization
and Mechanical Properties of Cementitious Mortar
Containing Montmorillonite Nanoparticles”. Journal of
Materials in Civil Engineering, DOI: 10.1061/(ASCE)MT.1943
-5533.0001671
[8]. Khademi, F., Akbari, M., and Jamal, S.M. (2015a).
“Prediction of Compressive Strength of Concrete by Data-
Driven Models”. i-manager's Journal on Civil Engineering,
Vol. 5, No. 2, Mar-May 2015, Print ISSN 2231- 1068, E-ISSN
2249-0779, pp. 16-23.
[9]. Khademi, F., Akbari, M., and Jamal, S.M. (2015b).
“Measuring Compressive Strength of Puzzolan Concrete by
Ultrasonic Pulse Velocity Method”. i-Manager's Journal on
Civil Engineering, Vol. 5, No. 3, pp. 23.
[10]. Khademi, F., and Behfarnia, K., (2016). “Evaluation Of
Concrete Compressive Strength Using Artificial Neural
Network And Multiple Linear Regression Models”. Iran
University of Science & Technology, Vol. 6, No. 3, pp. 423-
432.
[11]. Khalilpasha, M.H., Sadeghi-Nik, A., Lotfi-Omran, O.,
Kimiaeifard, K., and Amirpour-Molla, M. (2012).
“Sustainable development using Recyclable rubber in Self-
Compacting Concrete”. Third International Conference
on Construction in Developing Countries (Advancing Civil,
Architectural and Construction Engineering &
Management), pp. 580-585, Bangkok, Thailand.
[12]. Mosavi, S.M., and Sadeghi-Nik, A. (2015).
“Strengthening of Steel–Concrete Composite Girders using
Carbon Fibre Reinforced Polymer (CFRP) plates”. Sadhana,
Vol. 40, No. 1, pp. 249-261.
[13]. Nikoo, M., Torabian Moghadam, F., and Sadowski, L.
(2015a). “Prediction of Concrete Compressive Strength by
Evolutionary Artificial Neural Networks”. Advances in
Materials Science and Engineering, Vol. 2015.
[14]. Nikoo, M., Zarfam, P., and Sayahpour, H. (2015b).
“Determination of Compressive Strength of Concrete using
Self Organization Feature Map (SOFM)”. Engineering with
Computers, Vol. 31, No. 1, pp. 113-121. doi:10.1007/
s00366-013-0334-x
[15]. Nikoo, M., Zarfam, P., and Nikoo, M. (2012).
“Determining Displacement in Concrete Reinforcement
Building with using Evolutionary Artificial Neural Networks”.
World Applied Sciences Journal, Vol. 16, No. 12, pp. 1699-
1708.
[16]. Ramezanianpour, A.A., Sobhani, M., and Sobhani, J.
(2004). “Application of Network-Based Neuro-Fuzzy System
for prediction of the strength of high strength concrete”.
ANIRKABIR, Vol. 15, No. 59, pp. 78-93.
[17]. Sadeghi-Nik, A., Bahari, A., and Amiri, B. (2011).
“Nanostructural properties of Cement – matrix composite”.
Journal of Basic and Applied Scientific Research, Vol.11,
pp. 2167-2173.
[18]. Sadowski, L., and Nikoo, M., (2014). Corrosion Current
Density Prediction in Reinforced Concrete by Imperialist
Competitive Algorithm. Neural Computing and
Applications, pp. 1627-1638
[19]. Siddique, R., Aggarwal, P., and Aggarwal, Y. (2011).
“Prediction of Compressive Strength of Self-compacting
Concrete Containing Bottom Ash Using Artificial Neural
Networks”. Advances in Engineering Software, Vol. 42, No.
10, pp. 780-786.
[20]. Standard, A.S.T.M., (1997). “Standard test method for
Compressive Strength of Cylindrical Concrete Specimens’.
C39-86, pp. 20-24.