Axisymmetric Vibration of Pyrocomposite Solid Cylinder

V.K. Nelson*, S. Karthikeyan**
*Department of Mathematics, Government College of Engineering, Salem.
** Department of Mathematics, Sona College of Technology, Salem.
Periodicity:August - October'2008
DOI : https://doi.org/10.26634/jfet.4.1.583

Abstract

Axisymmetric vibration of an infinite Pyrocomposite circular cylinder made of inner solid and outer hollow pyroelectric layer belonging to crystal class 6 bonded together by a Linear Elastic Material with Voids (LEMV) is studied. The exact frequency equation is obtained for the traction free outer surface with continuity conditions at the interfaces.  Numerical results in the form of data and dispersion curves for the first and second mode of the axisymmetric vibration of the cylinder ceramic - 1/ Adhesive / ceramic - 2 by taking the adherents as BaTio3 and the adhesive layer as an existing Carbon Fibre Reinforced Polymer (CFRP) or as a hypothetical LEMV layer with and without voids are compared with a pyroelectric solid cylinder. The damping is analyzed through the imaginary part of the complex frequency.

Keywords

Axisymmetric Vibration, Pyrocomposite, Solid Cylinder, Linear Elastic Material with Voids(LEMV), Carbon Fibre Reinforced Polymer(CFRP).

How to Cite this Article?

V. K. Nelson and S. Karthikeyan (2008). Axisymmetric Vibration Of Pyrocomposite Solid Cylinder. i-manager’s Journal on Future Engineering and Technology, 4(1), 69-75. https://doi.org/10.26634/jfet.4.1.583

References

[1]. Shinya Okuda, Shigeo Kaneda and Hirohide Haga, “Human Position /Height detection using analog type pyroelectric sensor”, Embedded ubiquitous computing, 2005, 306-315.
[2]. Gao Xiang, “The Improved detectors for far infrared laser Interferometer measuring” Int. J. Infrared and Millimeter Waves, Vol.11, No (5)/May 1990, 641-649.
[3]. A A Lash and D. N Yundev. “Sub-millimeter imaging with a Pyroelectric TV camera”, Int. J. Infrared and Millimeter Waves, Vol.5, No (4)/April 1984, 489-505.
[4]. J. Jirrmann “A simple pyroelectric power meter for the FIR range”, Int. J. Infrared and Millimeter Waves, Vol.5, No (5)/May 1984, 637- 642.
[5]. H.S. Paul and G.V.Raman “Wave propagation in a pyroelectric cylinder of arbitrary cross section with a circular cylindrical cavity”, J. Acoust. Soc. Am, 93, 1175(1993).
[6]. H.S. Paul and G.V. Raman “Wave propagation in a hollow Pyroelectric circular cylinder of crystal class 6”, Acta Mechanica, 87, 37-46 (1991)
[7]. H.S. Paul and G.V. Raman “Vibrations of Pyroelectric plates”, J. Acoust. Soc. Am, 90 (4), 1991
[8]. H.S Paul and V.K. Nelson, “Axisymmetric Vibration of Piezoelectric Composite Cylinders”, Proc. Third International on Air and Structure-borne Sound and Vibration, Vol.1, 137 144, 1994.
[9]. R.Y. Vasudeva and P. Govinda Rao, “Influence of voids in interace zones on lamb wav propagation in composite plates”,J. Acoust.soc.Am., 89(1991) 516 522.
[10] . R.Y. Vasudeva and P. Govinda Rao , “Influence of voids in interface zones on lamb mode spectra in fiber reinforced composite laminates”,J. Appl. Phys 71(1991), 612 619.
[11]. S.C. Cowin and J.W. Nunziato ,”Linear Elastic Materials with voids”, J. Elasticity 13 (1983), 125-147.
[12]. B.D. Harper, G.H. Staab and R.C Chen, “A Note on the Effects of Voids Upon the Hygral and Mechanical properties of AS4/3502 Graphite/Epoxy”, J. composite material, 21(1987),280 289.
[13]. E.J.V. Voorhees and D.J. Green, “Mechanical Behavior of a Ceramic Sandwich Composite System”, J. composite materials, 26(1992) 1664 1677.
[14]. Takagikiyoshi, Sato Hiroshi, Saigo Muneharu, and C. Smith Ralph.,Modeling, signal processing, and control Conference, San Diego CA, ETATS-UNIS, Vol.5757 (2005), 471 280.
[15]. R.D. Mindlin,” On the equations of motion of piezoelectric crystals”, Problems i n Continuum Mechanics, SIAM,282 290 (1961).
[16]. R.D. Mindlin, “Equations of High Frequency vibrations of Thermo Piezoelectric crystal plate”,Int.J.Solids structures, 1974,Vol.10, PP 625-637
[17]. S.C. Cowin and P. Puri,” The classical pressure vessel problems for linear elastic material with voids”, J. Elasticity, 13 (1983), 157-163.
[18]. R.J. Atkin, S.C. Cowin and N. Fox, “On boundary conditions for polar materials”, zeitschrift für angewandte Mathematik und phhysik, 28, 1017, 1977.
[19]. M.K.Jain, S.R.K Iyengar and R.K.Jain, “Numerical Methods for Scienctific and Engineering Computation”, Wiley, New York, 1987 2 ed.
[20]. D.A. Berlincourt, D.R. Curran, H. Jaffe, “Physical acoustics”, Vol.1, Pt.A, pp.204 - 206, New York, Academic 1964.
[21]. E.V. Condan, H. Odishaw, “American institute of physics handbook”, pp.9-118. New York, McGraw Hill,1972.
[22]. P. Puri and S.C. Cowin, “Plane waves in Linear elastic materials with voids”, J. Elasticity, 15, 167 183, 1985.
[23]. M.F. Ashby and D.R.H. Jones , “Engineering Materials 2”, Pergamon Press, 1986.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.