References
[1]. Swamy, R. N., & Bouikni, A. (1990). “Some engineering
properties of slag concrete as influenced by mix
proportioning and curing”. ACI Materials Journal,
Vol.87(3).
[2]. Cao, C., Sun, W., & Qin, H. (2000). “The analysis on
strength and fly ash effect of roller-compacted concrete
with high volume fly ash”. Cement and Concrete
Research, Vol.30(1), pp.71-75.
[3]. Vahedifard, F., Nili, M., & Meehan, C. L. (2010).
“Assessing the effects of supplementary cementitious
materials on the performance of low-cement roller
compacted concrete pavement”. Construction and
Building Materials, Vol.24(12), pp.2528-2535.
[4]. Albuquerque, M. C., Balbo, J. T., Sansone, E. C., &
Pinto, P. C. (2011). “Fracture characterization of roller
compacted concrete mixtures with blast furnace slag
and industrial sand”. Dimension, Vol.2000, pp.2-4.
[5]. Siddique, R. (2003). “Effect of fine aggregate
replacement with Class F fly ash on the mechanical
properties of concrete”. Cement and Concrete
research, Vol.33(4), pp.539-547.
[6]. Madhkhan, M., Azizkhani, R., & Harchegani, M. T.
(2012). “Effects of pozzolans together with steel and
polypropylene fibers on mechanical properties of RCC
pavements”. Construction and Building Materials,
Vol.26(1), pp.102-112.
[7]. Kumar, P., & Kaushik, S. K. (2003). “Some trends in the
use of concrete: Indian scenario”, Indian Concrete
Journal, Vol.77(12), pp.1503-1508.
[8]. Naik, T. R., Chun, Y. M., Kraus, R. N., Singh, S. S.,
Pennock, L. L. C., & Ramme, B. W. (2001). “Strength and
durability of roller-compacted HVFA concrete
pavements”. Practice Periodical on Structural Design
and Construction, Vol.6(4), pp.154-165.
[9]. Atis, C. D. (2005). “Strength properties of high-volume fly ash roller compacted and workable concrete, and
influence of curing condition”. Cement and Concrete
Research, Vol.35(6), pp.1112-1121.
[10]. Mardani-Aghabaglou, A., & Ramyar, K. (2013).
“Mechanical properties of high-volume fly ash roller
compacted concrete designed by maximum density
method”. Construction and Building Materials, Vol.38,
pp.356-364.
[11]. Rao, S.K., P. Sravana, & Rao,T.C., (2015). “Analysis on
strength and Fly ash effect of Roller compacted concrete
pavement Using M-sand”. i-manager Journal on
Structural Engineering, Vol.4, No.1, March- May 2015
[12]. Rao, S.K., P. Sravana, & Rao,T.C., (2015).
“Experimental Investigation on Pozzolanic effect of fly ash
in Roller compacted concrete pavement using
Manufactured Sand as fine Aggregate”. International
Journal of Applied Engineering Research, Vol.10, No.8,
pp.20669-20682, Research India Publications.
[13]. Shariq, M., Prasad, J., & Masood, A. (2013). “Studies
in ultrasonic pulse velocity of concrete containing
GGBFS”, Construction and Building Materials, Vol.40,
pp.944-950.
[14]. Jones, R., & Facaoaru, I. (1969). “Recommendations
for testing concrete by the ultrasonic pulse method”.
Materials and Structures, Vol.2(4), pp.275-284.
[15]. IS 13311, Part I ''Standard Code of Practice for Non-
Destructive Testing of Concrete: Part 1—Ultrasonic Pulse
Velocity'', Bureau of Indian Standards, New Delhi.
[16]. Qixian, L., & Bungey, J. H. (1996). “Using
compression wave ultrasonic transducers to measure the
velocity of surface waves and hence determine dynamic
modulus of elasticity for concrete”. Construction and
Building Materials, Vol.10(4), pp.237-242.
[17]. Wen, S. Y., & Li, X. B. (2000). “Experimental study on
Young's modulus of concrete”. Journal of Central South
University of Technology, Vol.7(1), pp.43-45.
[18]. Qasrawi, H. Y. (2000). “Concrete strength by
combined nondestructive methods simply and reliably
predicted”. Cement and Concrete Research, Vol.30(5),
pp.739-746.
[19]. Kolluru, S. V., Popovics, J. S., & Shah, S. P. (2000).
“Determining elastic properties of concrete using
vibrational resonance frequencies of standard test
cylinders”. Cement Concrete and Aggregates, Vol.22(2),
pp.81-89.
[20]. Yaman, I. O., Inci, G., Yesiller, N., & Aktan, H. M.
(2001). “Ultrasonic pulse velocity in concrete using direct
and indirect transmission”. ACI Materials Journal,
Vol.98(6), pp.450.
[21]. Choudhari, N. K., Kumar, A., Kumar, Y., & Gupta, R.
(2002). “Evaluation of elastic moduli of concrete by
ultrasonic velocity”. In National Seminar of Indian
Socciety of Non-destructive Test (ISNT), Chennai, India.
[22]. Conrad, M., Aufleger, M., & Malkawi, A. H. (2003).
“Investigations on the modulus of elasticity of Young
RCC”. Strain, Vol.1, 4-0.
[23]. Washer, G., Fuchs, P., Graybeal, B., & Hartmann, J. L.
(2004). “Ultrasonic testing of reactive powder concrete”.
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE
Transactions on, Vol.51(2), pp.193-201.
[24]. ACI 116R-99(1999). “Manual of concrete practice.
part 1”, American Concrete Institute.
[25]. ACI 325 10R-95, (2000). “State-of-the-Art report on
roller compacted concrete pavements ”. ACI
manual of concrete practice.
[26]. Adaska, W. S. (2006). Roller-Compacted Concrete
(RCC). Significance of Tests and Properties of Concrete
and Concrete-making Materials, pp.595.
[27]. IS 4031-1999. “Methods of physical tests for
hydraulic cement”.
[28]. BIS 383-1970. Indian Standard specification for
coarse and fine aggregates from natural sources for
concrete (Second Revision).
[29]. ACI 211 3R-02(2002). “Guide for Selecting
Proportions for No-Slump Concrete”.
[30]. Krishna Rao, S., Chandra Sekhar Rao, T., & Sravana,
P., (2013). “Effect of Manufacture sand on Strength
Characteristics of Roller Compacted Concrete”. In
International Journal of Engineering Research and
Technology, Vol. 2, No. 2 , ESRSA Publications.
[31]. Rao, S.K., P. Sravana, Rao, T.C., (2015). “Design and
analysis of Roller Compacted Concrete pavements in low
volume roads in India”. i-manager Journal on Civil
Engineering, Vol.5 No.2.
[32]. Rao, S.K., P.Sravana, & Rao,T.C., (2015).
“Investigation on pozzolanic effect of Fly ash in Roller
Compacted Concrete pavement”. IRACST-Engineering
Science and Technology: An International Journal (ESTIJ),
Vol.5 No.2 , pp.202-206.
[33]. IS: 516-1959. “Indian standard code of practice -
Methods of test for strength of concrete”, Bureau of Indian
Standards, New Delhi, India.
[34]. Demirboga, R., Turkmen, I., & Karakoc, M. B. (2004).
“Relationship between ultrasonic velocity and compressive
strength for high-volume mineral-admixtured concrete”.
Cement and Concrete Research, Vol.34(12), pp.2329-
2336.
[35]. Atici, U. (2011). “Prediction of the strength of mineral
admixture concrete using multivariable regression
analysis and an artificial neural network”. Expert Systems
with applications, Vol.38(8), pp.9609-9618.
[36]. Trtnik, G., Kavcic, F., & Turk, G. (2009). “Prediction of
concrete strength using ultrasonic pulse velocity and
artificial neural networks”. Ultrasonics, Vol.49(1), pp.53-60.
[37]. Panzera, T. H., Christoforo, A. L., Bowen, C. R., Cota, F.
P., & Borges, P. H. R. (2011). “Ultrasonic pulse velocity
evaluation of cementitious materials”. INTECH, Open
Access Publisher.
[38]. Turgut, P. (2004). “Research into the correlation
between concrete strength and UPV values”. Vol. 12(12).
[39]. Hannachi, S., & Guetteche, M. N. (2012).
“Application of the Combined Method for Evaluating the
Compressive Strength of Concrete on Site”. Open Journal
of Civil Engineering, Vol.2(01), pp.16.
[40]. Neville, A. M. (1995). “Properties of concrete”.
[41]. Omer, S. A., Demirboga, R., & Khushefati, W. H.
(2015). “Relationship between compressive strength and
UPV of GGBFS based geopolymer mortars exposed to
elevated temperatures”. Construction and Building
Materials, Vol.94, pp.189-195.
[42]. Kar, A., Halabe, U. B., Ray, I., & Unnikrishnan, A.
(2013). “Nondestructive characterizations of alkali
activated fly ash and/or slag concrete”. European
Scientific Journal, Vol.9(24).
[43]. Singh, G., & Siddique, R. (2012). “Effect of Waste
Foundry Sand (WFS) as partial replacement of sand on the
strength, Ultrasonic Pulse Velocity and permeability of
concrete”. Construction and Building Materials, Vol.26(1),
pp.416-422.
[44]. Ahn, N. S., & Fowler, D. W. (2001). “An experimental
study on the guidelines for using higher contents of
aggregate microfines in Portland cement concrete (No.
Research Report)”, International Center for Aggregates
Research, University of Texas, Austin.
[45]. Teng, S., Lim, T. Y. D., & Divsholi, B. S. (2013).
“Durability and mechanical properties of high strength
concrete incorporating ultra fine ground granulated
blast-furnace slag”. Construction and Building Materials,
Vol.40, pp.875-881.
[46]. Salman, M., & Al-Amawee, H. (2006). “The ratio
between static and dynamic modulus of elasticity in
normal and high strength concrete”, Journal of
Engineering and Development. Vol.10(2), pp.163-174.
[47]. IRC SP:62-2004 (2014). “Guidelines for Design and
Construction of Cement Concrete Pavements for Low
Volume Roads”. The Indian Roads Congress, New Delhi.
[48]. Rao, S. K., P. Sravana, & Rao, T. C., (2016).
“experimental studies in ultrasonic pulse velocity of roller
compacted concrete containing GGBS and M-sand”.
ARPN Journal of Engineering and Applied Sciences, Vol.
11 No. 3
[49]. Rao, S. K., Sravana, P., & Rao, T. C. (2015).
“Investigation On Pozzolanic Effect Of Mineral Admixtures
In Roller Compacted Concrete Pavement”. i-manager's
Journal on Structural Engineering, Vol.4(2), pp.28.
[50]. Rao, S. K., Sravana, P., & Rao, T. C.(2015). “Effect Of
M-sand and Ggbs on Strength and Compaction
Characteristics of Roller Compacted Concrete
PavemenT (RCCP)”. International Journal of Research in
Engineering and Technology, Vol. 4, Spl. No. 13.
[51]. Rao, S. K., Sravana, P., & Rao, T. C. (2015). “Strength
and Compaction Characteristics of Fly Ash Roller
Compacted Concrete”. International Journal of
Scientific Research in Knowledge, Vol. 3, No. 10, pp.0260-
269.DOI:http://dx.doi.org/10.12983/ijsrk-2015-p0260-
0269