References
[1]. Abo-Qudais, S. A. (2005). “Effect of concrete mixing
parameters on propagation of ultrasonic waves”.
Construction and building materials, Vol.19(4), pp.257-
263.
[2]. Akkaya, Y., Voigt, T., Subramaniam, K. V., & Shah, S. P.
(2003). “Nondestructive measurement of concrete
strength gain by an ultrasonic wave reflection method”.
Materials and Structures, Vol.36(8), pp.507-514.
[3].Bogas, J. A., Gomes, M. G., & Gomes, A. (2013).
“Compressive strength evaluation of structural lightweight
concrete by non-destructive ultrasonic pulse velocity
method”. Ultrasonics, Vol.53(5), pp.962-972.
[4]. Bungey, J. H., Grantham, M. G., & Millard, S. (2006).
Testing concrete in structures. 4th ed Crc Press/Taylor&
Francis, pp.352.
[5]. C Schöler, A., Lothenbach, B., Winnefeld, F., & Zajac,
M. (2015). “Hydration of quaternary Portland cement
blends containing blast-furnace slag, siliceous fly ash and
limestone powder”. Cement and Concrete Composites,
Vol.55, pp.374-382.
[6]. G Trtnik, G., & Gams, M. (2015). “Ultrasonic assessment of initial compressive strength gain of cement
based materials”. Cement and Concrete Research,
Vol.67, pp.148-155.
[7]. Keating, J., Hannant, D. J., & Hibbert, A. P. (1989).
“Correlation between cube strength, ultrasonic pulse
velocity and volume change for oil well cement slurries”.
Cement and Concrete Research, Vol.19(5), pp.715-726
[8]. Khademi, F., Akbari, M., Jamal, S. M. (2015).
Prediction of compressive strength of concrete by datadriven
models. i-manager's Journal on Civil Engineering,
Vol.5(2), Mar-May 2015, Print ISSN 2231- 1068, E-ISSN
2249-0779, pp. 16-23.
[9]. Malhotra, V. M. (1976). Testing hardened concrete:
nondestructive methods (No. 9). Lowa State Press.
[10]. Mefteh, H., Kebaïli, O., Oucief, H., Berredjem, L., &
Arabi, N. (2013). “Influence of moisture conditioning of
recycled aggregates on the properties of fresh and
hardened concrete”. Journal of Cleaner Production,
Vol.54, pp.282-288.
[11]. Nikoo, M., Torabian Moghadam, F., & Sadowski, L.
(2015a). “Prediction of Concrete Compressive Strength
by Evolutionary Artificial Neural Networks”. Advances in
Materials Science and Engineering, pp.8.
[12]. Nikoo, M., Zarfam, P., & Sayahpour, H. (2015b).
“Determination of compressive strength of concrete using
Self Organization Feature Map (SOFM)”, Engineering with
Computers, Vol.31(1), pp.113-121.
[13]. Papadakis, E. P. (1968). “Buffer-Rod System for
Ultrasonic Attenuation Measurements”, The Journal of the
Acoustical Society of America, Vol.44(5), pp.1437-1441.
[14]. Robeyst, N., Gruyaert, E., Grosse, C. U., & De Belie,
N. (2008). “Monitoring the setting of concrete containing
blast-furnace slag by measuring the ultrasonic p-wave
velocity”, Cement and Concrete research, Vol.38(10),
pp.1169-1176.
[15]. K. Samrajyam, B. Sobha, T. D. Gunneswara Rao and
R.L.N. Sai Prasad (2014). Plastic Optic Fiber (POF) Based
Phase Difference Measurement Method for Estimation of
Crack Mouth Opening Displacement (CMOD) In
Concrete. i-manager's Journal on Civil Engineering,
Vol.4(2), Mar-May 2014, Print ISSN 2231- 1068, E-ISSN
2249-0779, pp. 13-19.
[16]. Solis-Carcaño, R., & Moreno, E. I. (2008). “Evaluation
of concrete made with crushed limestone aggregate
based on ultrasonic pulse velocity”, Construction and
Building Materials, Vol.22(6), pp.1225-1231.
[17]. Voigt, T., Akkaya, Y., & Shah, S. P. (2003).
“Determination of early age mortar and concrete strength
by ultrasonic wave reflections”, Journal of Materials in Civil
Engineering, Vol.15(3), pp.247-254.
[18]. Zhang, Y., Zhang, W., She, W., Ma, L., & Zhu, W.
(2012). “Ultrasound monitoring of setting and hardening
process of ultra-high performance cementitious
materials”. NDT & E International, Vol.47, pp.177-184.