Revival and Collapse of the Vibrational State Wave Packet for Diatomic Molecule in an Anharmonic Potential

Maninder Kaur*, Mahmood Mian**, Manpreet Kaur***
*Assistant Professor, Department of Physics, D.A.V. College, Amritsar, India.
** Professor, Department of Physics, Guru Nanak Dev University, Amritsar, India.
***P.G Graduate, Department of Physics, D.A.V. College, Amritsar, India
Periodicity:April - June'2015
DOI : https://doi.org/10.26634/jms.3.1.3369

Abstract

This paper presents the time evolution of a quantum wave packet bound in the Morse potential. The quantum wave packet is the superposition of vibrational energy levels of a diatomic molecule in an anharmonic potential. The probability density function, auto-correlation function, and various time scales have been used to explore the revival pattern of this wave packet. The dynamics of the wave packet with respect to time shows a series of collapses and the subsequent revivals. The results are presented for CO molecule.

Keywords

Quantum Mechanics, Bound Wave Packets, Revivals and Collapses.

How to Cite this Article?

Kaur, M., Mian, M., and Kaur, M. (2015). Revival and Collapse of the Vibrational State Wave Packet for Diatomic Molecule in an Anharmonic Potential. i-manager’s Journal on Material Science, 3(1), 31-36. https://doi.org/10.26634/jms.3.1.3369

References

[1]. C. U. Segre, and J. D. Sullivan, (1976). “Bound-state wave packets, '' Am. J. Phys, Vol. 44, pp.729-732.
[2]. D. L. Aronstein, and C. R. Stroud, (1997). 'Fractional wave-function revivals in the infinite square well, '' Phys. Rev. A, Vol. 55, pp. 4526—4537.
[3]. R. W. Robinett, (2000). “Visualizing the collapse and revival of wave packets in the infnite square well using expectation values, '' Am. J. Phys, Vol. 68, pp.410-420.
[4]. D. F. Styer, (2001). “Quantum revivals verses classical periodicity in the infinite square well, ” Am, J. Phy., Vol. 69, pp. 56-62.
[5]. R. W. Robinett, (2004). “Quantum wave packet revivals,” Physics Reports, Vol. 392, pp.1-119.
[6]. Robert Bluhm, V. Alan Kostelecky, and James A. Porter, (1996). “The evolution and revival structure of localized quantum wave packet, ” Am. J. Phys, Vol. 64, pp.944-953.
[7]. L. S. Brown, (1973). “Classical limit of hydrogen atom, '' Am. J. Phy. Vol. 41, pp. 525-530.
[8]. Z. D. Gaeta, and C. R. Stroud, (1990). “Classical and quantum mechanical dynamics of a quasiclassical state of the hydrogen atom,' 'Physical review A, Vol. 42, pp. 6308 - 6313,
[9]. Todd K. Timberlake, and Seth Camp, (2011). “ Decay of wave packet revivals in the asymmetric infinite square well,” Am. J. Phys, Vol. 79, pp.607-614.
[10]. Anu Venugopalan, and G. S. Agarwal, (1999). “Superrevivals in the Quantum dynamics of a particle trapped in a finite square well potential,'' Phys. Rev. A Vol. 59 (2),, pp.1413 - 1422.
[11]. Michael Nauenberg, (1990). “Autocorrelation function and quantum recurrence of wave packets,'' Journal of Physics B, Vol. 23, pp. L385-L390.
[12]. Demikhovskii, V. Ya.; Telezhnikov, A. V.; Frolova, E. V.; Kravets, N. A., (2013). “Mesoscopic states in graphene in a magnetic field: Collapse and revival of wave packets”, Low Temperature Physics, Vol 39, Issue 1, pp. 18-25.
[13]. Fam Le Kien, K. Hakuta, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, (2013). “Quantum dynamics of an atom orbiting around an optical nanofiber”, Phys. Rev. A 87, 063607.
[14]. B. Gruner, M. Schlesinger et al, (2011). “Vibrational relaxation and dephasing of Rb2 attached to helium nanodroplets,” Phys. Chem. Chem. Phys., Vol 13, pp. 6816–6826.
[15]. Popat S. Tambade, (2011). “Harmonic oscillator wave function and probability density plots using spreadsheets,” Lat. Am. J. Phy. Educ. Vol. 5, pp. 43 - 48.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.