References
[1]. Caskey, J. M. (2001). “Uplift capacity of rammed
aggregate piers soil reinforcing elements”, M.S. Thesis,
University of Memphis.
[2]. Farrell, T., Patrick, B. F. and Kenney, W. (2008). “Uplift
testing of rammed aggregate pier systems”, Proc.
Conference of Geotechnical Earthquake Engineering
and Soil Dynamics IV, Sacramento, California.
[3]. Hsu, C. L. (2000). “Uplift capacity of geopier
foundations”, M.S. Thesis, University of Utah.
[4]. Kumar, P. and Ranjan, G. (1997). "AGP system for
pulloutloads - a field study", Indian Geotechnical
Conference, IGC-97, Vadodara, India, Vol. I, pp. 349-
352.
[5]. Kumar, P. and Ranjan, G. (1999). "Granular pile system
for uplifting loads - a case study", Proc. International Conf.
on Offshore and Nearshore Geotechnical Engineering,
GEOSHORE (1999), NGI (Norwey) & IEOT, ONGC, Bombay,
India, pp.427-432.
[6]. Kumar, P., Ranjan, G. and Saran, S. (2003). “GAP
System for resistance of uplift forces – a field study”,
Proceedings of IGC, pp. 597-602.
[7]. Kumar, P., Ranjan, G. and Saran, S. (2004). “Granular
pile system for strengthening of weak soil deposits”, Proc.
International Conf. on Geo synthetics and
Geoenvironmental Engineering (ICGGE 2004), Theme 5:
Ground Improvement, Indian Institute of Technology
Bombay, Mumbai (India), Dec 8-10th 2004, pp. 217-222.
[8]. Lawton, E. C. (2000). “Performance of geopier
foundations during simulated seismic tests at South
Temple Bridge on Interstate 15, Salt Lake City, Utah”, Final
Report, No. UUCVEEN 00-03, University of Utah, Salt Lake
City, Utah.
[9]. Lillis, C., Lutenegger, A. J and Adams, M. (2004).
“Compression and uplift of rammed aggregate piers in
clay”, Geosupport: ASCE/GEO Geotechnical Special
Publication No. 14, pp. 497-507.
[10]. Madhav, M.R., Vidyaranya, B. and Sivakumar, V.
(2008). “Linear analysis and comparison of displacements -
granular pile anchors”, J. Ground Improvement, Issue 161:
pp. 31- 41.
[11]. Phanikumar, B. R. (1997). “A study of swelling
characteristics of and granular pile anchor foundation
system in expansive soils”, Ph. D. Thesis, Jawaharlal Nehru
Technological University, Hyderabad, India.
[12]. Phanikumar, B. R. and Rao, N. R. (2000). “Increasing
pullout capacity of granular pile anchors using base
geosynthetics”, Canadian Geotechnical Journal, Vol.37,
pp. 870-881.
[13]. Phanikumar, B. R., Sharma, R. S., Srirama Rao, A. and
Madhav, M. R. (2004). “Granular pile anchor foundation
(GPAF) system for improving the engineering behaviour of
expansive clay beds”, Geotechnical Testing Journal,
American Standard Testing Machines, Vol.27, No.3, pp. 1-9.
[14]. Ranjan, G. and Kumar, P. (2000). “Behaviour of
granular piles under compressive and tensile loads”,
Geotechnical Engineering Journal of SEAGS, Vol.31,
No.3, pp. 209.
[15]. Sharma, R. S. and Phanikumar, B. R. (2005).
“Laboratory study of heave behaviour of expansive clay
reinforced with geopiles”, Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol. 131, No.4, pp.
512-520.
[16]. Sharma, R. S., Phanikumar, B. R. And Nagendra
(2004). “Compressive load response of geogrid
reinforced granular piles in soft clays”, Candian
Geotechnical Journal, Vol. 41, No. 1, pp. 187-192.
[17]. Vidyaranya, B. (2012). “Ultimate capacity and
displacement analysis of single and group of granular
pile anchors”, Ph.D. Thesis, Osmania University,
Hyderabad, India.
[18]. White, D. J., Lawton, E. C. and Pitt, J. M. (2000).
“Lateral earth pressure induced by rammed aggregate
piers”, Proc. 53rd Canadian Geotechnical Conference,
Montreal, Vol. 2, pp. 871-876.