References
[1]. Adler,P.M. and Thovert,J.F. (1999). “Fractures
and
Fracture Networks”. Kluwer, Dordrecht, Academic
Publishers.
[2]. Bagherian, B., Sarmadivaleh, M.,Ghalambor,
A.,Nabipour, A., Rasouli, V. and Mahmoudi, M. (2010).
“Optimization of multiple-fractured horizontal tight gas
well”. Int. Symp. And Exhib.On Formation Damage Control,
LA, USA, Vol.1(2), pp.476-500.
[3]. Bahrami, V. and Mortazavi, A. (2008). “A
numerical
investigation of hydraulic fracturing process in oil reservoirs
using non-linear fracture mechanics”. Asian Rock Mech.
Symp., Tehran.
[4]. Basha, H.A. and El-Asmar, W. (2003). “The
fracture flow
equation and its perturbation solution”. Water Resour. Res.
Vol.39(12), pp.1365.
[5]. Bastian, P.(1999). “Numerical computation of
multiphase flow in porous media”. Habilitationsschrift.
[6]. Bazant, Z.P. (1975). “Pore pressure, uplift and
failure
analysis of dams”. Proc., Symp.On Criteria and
Assumptions for Numer. Analysis of Dams, Brit. Nat.
Committee on Large Dams, Swansea, Wales, 781-808.
[7]. Bear, J.(1979). “Hydraulics of Ground
water”. McGraw-
Hills, New York.
[8]. Beavers, G.S. and Joseph, D.D (1967). “Boundary
condisions at naturally permeable walls”. J. Fluid Mech.,
Vol. 30, pp.197-207.
[9]. Beavers, G.S., Sparrow, E. M., and Maguson, R.
A.(1970). “Experiments on coupled parallel flows in a
channel and bounding porous medium”. ASME J. Basic Eng., Vol. 92,
pp.843-848.
[10]. Berkowitz, B.(1989). “Boundary conditions
along
permeable fracture walls: influence on flow and
conductivity”. Water Resour. Res., Vol. 25, pp.1919-1922.
[11]. Berman, A.S. (1953). “Laminar flow in
channels with
porous walls”. J. Appl. Phys., Vol. 24, pp.1232-1235.
[12]. Boussinesq J (1868). “Thesis about the
influence of
friction within the steady flow of fluids)”. J Math. Pures. App.l
Vol. 13, pp.377–42
[13]. Bout, D.F., Grasselli, G., Fredrich, J.T., Cook, B.
K. and
Williams, J. R. (2006). “Trapping Zones: The effect of
fracture roughness on directional anisotropy of fluid flow
and colloid transport in a single fracture”. Geophys. Res.
Let. Vol. 33, L21402
[14]. Box, G.P.E. and Jenekis, G.M.(1976). “Time
series
analysis forecasting and control”. Holden Day, San
Fransisco.
[15]. Brooks, R. and Corey, A. T. (1964).
“Hydraulic
properties of porous media”. Hydrology Paper, Vol. 3,
Colorado State University.
[16]. Brown, S.R. (1987). “Fluid flow through rock
joints: the
effect of surface roughness”. J. Geophys. Res. Vol.(92),
pp.1337–1347.
[17]. Brown, S.R. (1995). “Simple mathematical
model of a
rough fracture”. J. Geophys. Res, Vol.(100), pp.5941-5952.
[18]. Brown, S. R., Stockman, H. W., and Reeves, S. J.
(1995). “Applicability of Reynolds equation for modeling
fluid flow between rough surfaces”. Geophys. Res. Lett.,
Vol.22, pp.2537-2540.
[19]. Brown,S.R. and Scholz, C.H. (1985). “Broad
bandwidth
study of the topography of natural science”. J.Geophys.
Res, Vol.90, pp.12575-12582.
[20]. Brown,S.R., Kranz R. L.and Bonner B.P. (1986).
“Correlation between the surfaces of natural rock joints”. J.
Geophys. Res.Lett, Vol.13(13), pp.1430-1433.
[21]. Brush, D. J. and Thomson, N. R. (2003).
“Fluid flow in
synthetic rough walled fractures: Navier-Stokes, Stokes, and
local cubic law simuations”. Water Resour. Res, Vol.39(4),
pp.1085.
[22]. Chang, M.H., Chen, F. and Straughan, B. (2006).
“Instability of Poiseuille flow in a fluid overlying a porous
layer”. J. Fluid Mech., Vol. 564, pp.287-303.
[23]. Christian, K., Richard A., Schultz. A., Rishi P.
and
Donald M. R.(2010). “Cubic law with aperture-length
correlation: implications for network scale fluid flow”.
Hydrogeology Journal, Springer-Verlag,
[24]. Christianovich, S. A. and Zheltov, Y. P. (1955).
“Formation of vertical fractures by means of highly viscous
fluid”. Proc. 4th Petrol. Congress, 579-586.
[25]. Cleary, M. P. (1980). “Comprehensive design
formulae for hydraulic fracturing”. Annual Tech.
Conference and Exhib., Dallas, TX, USA.
[26]. Crandall, D.,Ahmadi, G. and Smith, G.S. (2010).
“Computational modeling of fluid flow through a fracture in
permeable rock”. Transp. Porous Media, Vol. 84, pp.493-
510.
[27]. Dagan,G. (1993). “Higher order correction for
effective permeability of heterogeneous isotropic
formations of lognormal conduntivity distribution”. Transp.
Porous Media, Vol.12, pp.279-290.
[28]. Durham W. P., and Bonner, B.P.(1994). “Self
propping
and fluid flow in slightly offset joints at high effective
pressures”. J. Geophys. Res, Vol.99, pp.9391-9399.
[29]. Elrod, H.G.(1979). “A general theory of
laminar
lubrication with Reynolds roughness”. J. Lubr. Tech, Vol. 101,
pp. 8-14.
[30]. Fetter, C. W. (1999). “Contaminant
Hydrogeology”,
Prentice-Hall, Upper Saddle River, NJ, USA.
[31]. Fischer, U.B.,Kulli, B., and Fluhler,H. (1998).
“Constitutive relationships and pore structure of
undisturbed fracture zone samples with cohesionless fault
gouge layers”. Water Resour. Res., Vol.34(7), pp.1695-
1701.
[32]. Fourar, M., and Bories, S. (1995).
“Experimental study
of air-water two phase flow through a fracture (narrow
channel)”. Int. J. Multiphase Flow, Vol. 21, pp.621–637.
[33]. Fourar, M., Lenormand, R., and Persoff, P. (1993).
''Twophase
flow in smooth and rough fractures: Measurement
and correlation by porous medium and pipe flow models.''
Water Resour. Res., Vol. 29, pp.3699–3708.
[34]. Gang,i A.F. (1978). “Variation of whole and
fractured
porous rock permeability with confining pressure”. Int. J.
Rock Min. Sci. Geomech.Abstr, Vol.15, pp.249–257.
[35]. Ge, S.(1997). “A governing equation for fluid
flow in
rough fractures”. Water resources Research, Vol. 33, pp.
53-61.
[36]. Hakami, E. and Larsson E.(1996). “Aperture
measurements and flow experiments on single natural
fracture”. Int. J. Rock Mech. Min. Sci. Geomech. Abs., Vol
33, pp.395-404.
[37]. Hasgawa, E. and Izuchi, H. (1983). “On the
steady flow
through a channel consisting of an uneven wall and plane
wall”. Bull. Jap. Soc. Mech. Eng, Vol.26, pp.514-520.
[38]. Helmig, R.(1997). “Multiphase flow and
transport
processes in the subsurface: a contribution to the
modeling of hydrosystems”. Springer-Verlag, Berlin,
Heidelberg, New York.
[39]. Illangasekare, T., Amadei, B., and Chinnaswamy, C.
(1992). “CRFLOOD: A numerical model to estimate uplift
pressure distribution in cracks in concrete gravity dams”.
Tech. Rep. TR-101671, Vol.4, EPRI, Prepared by university of
Colorado, Boulder, Colo.
[40]. Indraratna, B., Ranjith, P.G, Price, J.R. and Gale,
W.
(2003). “Two-phase (air and water) flow through rock
joints:analytical and experimental study”. J. Geotech.
Geomech. Eng., ASCE, Vol.129(10), pp.918-928.
[41]. Ishii, M. (1975). “Thermo-fluid dynamic
theory of twophase
flow”, Electricite de France, Paris.
[42]. Iwai, K. (1976). “Fundamental studies of
fluid flow
through a single fracture”. Ph. D. Thesis, Univ. of Cali.,
Berkeley.
[43]. Javanmardi, F., Leger,P., and Tinawi, R.(2004).
“Seismic water pressure in cracked concrete gravity dams:
Experimental study and theoretical modeling”. J. Struc.
Engg., ASCE, Vol.131(1), pp.139-150.
[44]. Javanmardi, F., Leger,P., and Tinawi, R. (2005).
“Seismic structural stability of concrete gravity dams
considering transient uplift pressures in cracks”.
Engg.Struc., Elsevier, Vol.27, pp.616-628.
[45]. Jeffery, R. G., Settari, A. Mills, K. W., Zhang, X.
and
Detourmay, E. (2001). “Hydraulic fracturing to induce caving:
Fracture model development and comparison to
field data”. Proc., 38th US Rock Mechanics Symp.,
Balbema, Lisse, The Netherland, Vol. 1, pp.251-259.
[46]. Krantz, R.E., Franke, l A.D., Engelder, T., and
Scholz,
C.H. (1979). “The permeability of whole and jointed Barre
granite”. Int. J. Rock Min. Sci. GeomechAbstr, Vol. 16,
pp.225–234.
[47]. Kim, I., Lindquist, B. and Durham, W. (2003).
“Frature
flow simulation using a finite-difference lattice Boltzmann
method”. Phys. Rev. E., Vol. 67, pp.046708.
[48]. Liu, E. (2005). “Effect of fracture aperture
and
roughness on hydraulic and mechanical properties of
rocks : implication of seismic characterization of fractured
reservoirs”. J. Geophys, Eng, Vol. 2, pp.38-47.
[49]. Liu, R., Liu,Q.S. and Zhao, S.C. (2006).
“Instability of
Poiseuille flow in a fluid- porous system”. Phys.Fluids, Vol. 20,
pp.104105.
[50]. Logan, J. M., Rudnicki, J. W., Wawersik, W. R., and
Wong, T. (2000). “Geomechanics perspective in terrestrial
sequestration of CO2 : an assessment of research needs”.
Adv. Geophys., Vol. 43, pp.97-117
[51]. Lomize, G.M. (1951). “Water flow in jointed
rock”.
Gosenergoizant, Moscow.
[52]. Louis, C. (1969). “A study of groundwater
flow in
jointed rock and its influence on stability of rock masses”.
Rock Mechanics Research Report No. 10, Imperial College
London, England.
[53]. Mandelbrot , B. B.(1982). “Self-affine
fractals and
fractal dimension”. Phys. Scr., Vol. 32, pp.257-260.
[54]. Mohais,R.,Xu,C. and Dowd, P.A. (2011). “Fluid
flow
and heat transfer within a single horizontal channel in an
Enhanced Geothermal System”. J. Heat Transfer, Vol. 133,
pp.1126031.
[55]. Mohais,R., Xu,C., Dowd, P.A., Hand, and Phillip, M.
(2012). “Permeability correction factor for fracture with
permeable walls”. Geophysical Research, Vol. 39(3),
L03403.
[56]. Mourzenko, V. V., Thovert, J. F., and Adler, P. M.
(1995).
“Permeability of a single fracture-validity of Reynolds
equation”. J. Phys. II, Vol. 5, pp.465-482.
[57]. Murdoch, L. C., and Slack, W. W. (2002).
“Forms of
hydraulic fractures in shallow fine grained formations”. J.
Geotech. Geoenviron. Engg., Vol. 128(6), pp. 479-487.
[58]. Neale, G. and Nader, W. (1974). “Practical
significance of Brinkman's extension of Darcy's law”. Can. J.
Chem. Eng, Vol. 52, pp. 475-478.
[59]. Nichol, M. J., and Glass, R. J. (2001).
“Simulation of
immiscible viscous displacement within the plane of a
horizontal fracture”. Rock mechanics in the national
interest, Elsworth, Tinucci, and Heasley, eds., Swets and
Zeitlinger Lisse, pp.205–210
[60]. Nicholl, C.E.,Rajaram,H.,Glass R.J. and Detwiler,R.
(1999). “Saturated flow in single fracture: evaluation of
Reynolds equation in measured aperture fields”. Wat. Res.
Res., Vol. 35, pp.3361-3373.
[61]. Novakowski, K.S., Evans, G.V., Lever, D.A. and
Raven,
K.G. (1985). “A field example of measuring hydrodynamic
dispersion in a single fracture”. Water Resour. Res, Vol. 21,
pp.1165-1174.
[62]. Novakowski, K.S., Lapcevic, P.A., Voralec, J. and
Bickerton, G. (1995). “Preliminary interpretation of tracer
experiments conducted in a discrete rock fracture under
conditions of natural flow”. Geophys. Res. Lett., Vol. 22, pp.
1417-1420
[63]. Olson, J.E. (2003). “Sublinear scaling of
fracture
aperture versus length: an exception or the rule?”. J.
Geophys. Res, Vol. 108(B9), pp.2413.
[64]. Oron, P. F. and Brian B. (1998). “Flow in
rock fractures:
the local cubic law reexamined”. Water Resources
Research, Vol. 34, pp.2811-2825.
[65]. Patir, N. and Cheng, H.S. (1978). “An average
flow
model for determining the effects of three dimensional
roughness on partial hydrodynamic lubrication”. J. Lubr.
Tech., Vol.100, pp.12-17.
[66]. Peakau, O. A., and Zhu, X.(2008). “Effect of
seismic
uplift pressure on the behavior of concrete gravity dams
with penetrated crack”. J. Engg. Mech., ASCE, Vol.134(11),
pp.991-999.
[67]. Phillips, O. M. (1991). “Flow and reaction in
permeable Rocks”. Cambridge University Press,
Cambridge.
[68]. Poon, C. Y., Sayles, R.S. and Jones, T. A.(1992).
“Surface measurements and surface characterization of
naturally fractured rocks”. J. Phys. D, Vol.25, pp.1269-1275.
[69]. Power, W. L. and Tullis, T.E. (1991).
“Euclidean and
fractal models for the description of rock surface
roughness”. J. Geophys.Res, Vol. 96, pp.415-424.
[70]. Pruess, K., and Tsang, Y. W. (1990). “On
two-phase
relative permeability and capillary pressure of roughwalled
rock fractures”. Water Resour.Res., Vol. 26,
pp.1915–1926.
[71]. Pyrak-Nolte, L. J., Cook, N. G.W. Nolte, D.D.and
Witherspoon, P.A. (1987). “Hydraulic and mechanical
properties of natural fractures in low permeable rocks”.
Proc.6th Int. Congress Rock. Mech., pp.225-231.
[72]. Quin, J., Zhan, H., Zhao, W. and Suan, F. (2005).
“Experimental study of turbulent unconfined groundwater
flow in a single fracture”. J, Hydrol, Vol.311, pp.134-142.
[73]. Quin, J., Zhan, H.,and Zhao, W. F. (2007).
“Experimental evidence of scale-dependen hydraulic
conductivity for fully developed turbulent flow in a single
fracture”. J.Hydrol., Vol. 311(3-4), pp.206-215.
[74]. Quin, J., Chen, Z. Zhan, H.,and Guan, H. (2010).
“Experimental study of the effect of roughness and Reynold
number on fluid flow in rough-walled single fracture: A
check of local cubic law”. Hydrol.Process, (24).
[75]. Quin, J., Zhan H., Chen, Z. ,and Ye, H. (2011).
“Experimental study of solute transport under non-Darcian
flow in single fracture”. J. Hydrol., Vol. 399, pp.246-254.
[76]. Rasmuson, A. and Neretnieks, I. (1986).
“Radionuclide
transport in fast channels in crystalline rock”. Water Resour.
Res., Vol. 22, pp.1247-1256.
[77]. Rasmussen, T. C. (1991). “Steady fluid flow
and travel
times in partially saturated fractures using discrete air–water
interfaces”. Water Resour. Res., Vol. 27, pp.67–76.
[78]. Raven , K. G. and Gale, J.E.(1985). “Water
flow in
natural rock fracture as a function of stress and sample
size”. Int. J. Rock Mech.Min. Sci. Geomech. Abstr., Vol.
22(4), pp.251-261.
[79]. Raven, K.G., Novakowski, K.S. and Lapcevic, P.A.
(1988). “Interpretation of field tracer tests of a single fracture
using a transient solute storage model”. Water Resour. Res., Vol.
(24), pp.2019-2032.
[80]. Reichenberger, V., Jakobs, H.,Bastian, P. and
Helmig,
R.(2005). “A mixed dimensional finite volume method for
two-phase flow in fractured porous media”. Elsevier
Science.
[81]. Renshaw, C.E.(1995). “On relationship between
mechanical and hydraulic apertures in rough walled
fractures”. J. Geophys. Res, Vol.100, pp.24629-24636.
[82]. Sahraoui, M. and Kaviany, M. (1992). “Slip
and no-slip
velocity boundary condiions at interface of porous, plain
media”. Int. J. Heat Mass Transfer, Vol.35, pp.927-943.
[83]. Saouma, V., Broj, J., Bruhwiler, E., and Boggs, H.
(1991). “Effect of aggregate and specimen size on fracture
properties of dam concrete”. J. Mat. In Civil Engg., ASCE
Vol.3(3), pp.204-218.
[84]. Sarris, E. and Papanastasiou, P. (2012).
“Modeling of
hydraulic fracturing in a poroelastic cohesive formation”.
Int. J. Geomech., ASCE, Vol.12(2).
[85]. Sausse, J, and Genter, A. (2005). “Types of
permeable
fractures in granite, in Ptrophysical Properties of Crystalline
Rocks”, edited by P. K. Harvey, Geol. Soc. Spec. Publ.
[86]. Schmittbuhl, J. F.,Schmitt, F. and Scholz, C. H.
(1995).
“Scaling ivariance of crack surfaces”. J. Geophys.Res.,
Vol.100, pp.5953-5973.
[87]. Schultz, R.A., Soliva, R., Fossen, H., Okubo, C.H.,
Reeves, D.M. (2008). “Dependence of displacementlength
scaling relations for fractures and deformation
bands on the volumetric changes across them”. J. Struct.
Geol, Vol. 30, pp.1405–1411
[88]. Sharp, J.C., and Maini, Y.N.T. (1972).
“Fundamental
considerations on hydraulic characteristics of joints in rock”.
Proc. Symp. On Percolation through Fissured Rock,
International Society for Rock Mechanics, Stuttgart, n. T1-F.
[89]. Sisavath, S. A., Al-Yarubi, A., Pain, C,C. and
Zimmermann, R.W. (2003). “A simple model for deviations
from the cubic law for fracture undergoing dilation or
closure”. Pure Appl. Geophys, Vol.106, pp.1009-1022.
[90]. Slowik, V., and Saouma, V. E. (2000). “Water
pressure in
propagating concrete cracks”. J. Struc. Engg., ASCE,
Vol.126(2), pp.235-142.
[91]. Skjetne, I.N., Hansen, A. and Gudmundsson, J.S.
(1999). “High velocity flow in rough fracture”. J. Fluid
Mech.
Vol. 383, pp.1-28.
[92]. Soliman, M. Y., East, L. and Adams, D. (2004).
“Geomechanics
aspects of multiple fracturing of horizontal and
vertical wells”. Int. Therm. Operations and Heavy Oil
Symp.And Western Regional Meeting, CA, USA.
[93]. Sung-Hoon,J., Yeo, I. W., and Lee, K. (2003).
“Influence of ambient ground water flow on DNAPL
migration in a fractured network”. Geoph.Res. Lett., Vol.30
(10).
[94]. Terzhagi, K. (1936). “Simple tests to
determine
hydrostatic uplift”, Engg. News Rec., June 18,872
[95]. Thompson, M. and Brown, S.(1991). “The effect
of
anisotropic surface roughness on flow and transport in
fractures”. J. Geophys. Res, Vol.(96), pp.21923-21932.
[96]. Tilton, N. and Cortelezze (2006). “The
destabilizing
effects of wall permeability in channel fkow: a linear stability
analysis”. Phys. Fluids, Vol.(18), pp.051702.
[97]. Tsang, Y. W., and Tsang, C. F. (1987).
“Channel model
of flow through fractured media”. Water Resour. Res.,
Vol.23(3), pp.467-479.
[98]. Tsang, Y.W., and Witherspoon, P.A. (1981).
“Hydromechanical behavior of a deformable rock fracture
subject to normal stress”. J. Geophys. Res, Vol.(86),
pp.9287–9298.
[99]. Tsang, Y.W., and Witherspoon, P. A. (1983). ''The
dependence of fracture mechanical and fluid flow
properties on fracture roughness and sample size.'' J.
Geophys. Res., Vol.(88), pp.2359–2366.
[100]. Vermilye, J.M. and Scholz, C.H. (1995).
“Relation
between vein length and aperture”. J. Struct. Geol, Vol.(17),
pp.423–434.
[101]. Waite,M., Ge, S and Spetzler, H.(1999). “A
new
conceptual model for flow in discrete fractures: an
experimental and numerical studies”. J. Geophy. Res.,
Vol.104,pp.13049-13059.
[102]. Wen, Z., Huang, G., and Zhan, Z. (2006).
“Non-
Darcian flow in a single confined vertical fracture toward a
well”, J. Hydrol., Vol.330 (3-4), pp.698-708.
[103]. White, F.M.(1994). “Fluid Mechanics”,
McGraw Hills
Publ.
[104]. Witherspoon, P.A., Wang, J.S.Y., Iwai, K.,and
Gale,
J.E. (1980). “Validity of cubic law for fluid flow in a
deformable rock fracture”. Water Resou.r Res, Vol.16,
pp.1016– 1024.
[105]. Wittke, W. (1990). “Rock mechanics theory
and
applications with case studies”. Berlin (Germany), Springer
–Verlag.
[106]. Yeo,I., de Freitas, M.H.and Zimmerman, R.W.
(1998).
“Effect of shear displacement on the aperture and
permeability of rock fracture”. Int. J. Rock Mech. And Min.
Scien., Vol.28, pp.325-331.
[107]. Yeo, W. and Ge, S.(2005). “Applicable range
of
Reynolds equation for fluid flow in a rock fracture”. Geosc.J.
Vol.9, pp.347-352.
[108]. Zhan, H. (1998). “Transport of waste
leakages in
stratified formation”. Adv. Water Resour., Vol.22(2), pp.159-
168.
[109]. Zimmerman, R. W., and Bodvarsson, G.S. (1996).
“Hydraulic conductivity of rock fractures”. Transp. Porous
Media, Vol.23, pp.1-30.
[110]. Zimmerman, R. W., Chen, G.S.and Cook, N. G. W.
(1992). “The effect of contact area on permeability of
fractures”. J.Hydrol. Vol.139, pp.79-96.
[111]. Zimmerman, R. W., Kumar, S. and Bodvarsson, G.S.
(1991). “Lubrication theory analysis of the permeability of
rough-walled fractures”. Int. J. Rock Mech, Vol. 28 pp.325-
331.
[112]. Zimmerman, R. W., and Main I.G.(2004).
“Hydromechabical behavior of fractured rocks-Mechanics
of Fluid-Saturated Rocks”. Ed. Y Gueguen and M. Bouteca,
Elsevier, London.
[113]. Zimmerman, R.W. and Yeo, I.W. (2000).
“Fluid flow in
rock fractures: from the Navier-Stokes equations to the
cubic law”. In B.Fabishenko, P.A. Witherspoon and S.M.
Benson, ed. Dynamics of Fluids in Fractured Rocks,
American Geoph. Union, Washington.