Hydraulics of Fluid Flow in a Single Cohesive Crack: A Review of Some Basic Concepts

K.K.Pandey*, V.Kumar**
* Associate Professor, Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
** Professor, Department of Civil Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
Periodicity:March - May'2014
DOI : https://doi.org/10.26634/jce.4.2.2987

Abstract

Present review discusses the scope and limitations of basic equations of continuity and momentum used in the study of flow behavior in single crack. The continuity equation for liquid flow used in the literature does not account for source and sink which occurs during crack wall leakages. In two-phase continuity equation, inter-phase transfer terms have been identified to be used as source or sink terms. Navier-Stokes momentum equation and its simplifications under various assumptions, leading to derivations of Stokes and Reynolds equations, and their limitations along with computational difficulty in crack flow problems is discussed. Emergence of Local Cubic Law (LCL) equation and its limitations has been indicated. Validity of LCL equation has been tested in the literatures under the influence of various factors. The relative importance of inertial and viscous forces show that LCL equation is valid for Reynolds number of 10 and a non-linear relation between pressure gradient and volumetric flow rate need to be used when Reynolds number is between 10 and 100. The use of scaling law used in the fracture mechanics shows that in smooth walled fracture, the volumetric flow rate vary with fifth power of crack aperture and so this law is termed as 'quintic' law. There are few published works in literature to study the effect of slip boundary condition in deriving the correction factor in hydraulic conductivity of fracture using Beaver-Joseph slip boundary conditions in case of smooth permeable fracture walls. Some works have shown that formulation of momentum equation for different flow regimes of two phase flow in cracks is a difficult task.

Keywords

Crack, Momentum Equation, LCL Equation, Crack Wall Geometry, Self-affine, Quintic law, Hydraulic Conductivity, Two-Phase Flow.

How to Cite this Article?

Pandey.K.K., and Kumar.V. (2014). Hydraulics Of Fluid Flow In A Single Cohesive Crack: A Review Of Some Basic Concepts. i-manager’s Journal on Civil Engineering, 4(2), 25-38. https://doi.org/10.26634/jce.4.2.2987

References

[1]. Adler,P.M. and Thovert,J.F. (1999). “Fractures and Fracture Networks”. Kluwer, Dordrecht, Academic Publishers.
[2]. Bagherian, B., Sarmadivaleh, M.,Ghalambor, A.,Nabipour, A., Rasouli, V. and Mahmoudi, M. (2010). “Optimization of multiple-fractured horizontal tight gas well”. Int. Symp. And Exhib.On Formation Damage Control, LA, USA, Vol.1(2), pp.476-500.
[3]. Bahrami, V. and Mortazavi, A. (2008). “A numerical investigation of hydraulic fracturing process in oil reservoirs using non-linear fracture mechanics”. Asian Rock Mech. Symp., Tehran.
[4]. Basha, H.A. and El-Asmar, W. (2003). “The fracture flow equation and its perturbation solution”. Water Resour. Res. Vol.39(12), pp.1365.
[5]. Bastian, P.(1999). “Numerical computation of multiphase flow in porous media”. Habilitationsschrift.
[6]. Bazant, Z.P. (1975). “Pore pressure, uplift and failure analysis of dams”. Proc., Symp.On Criteria and Assumptions for Numer. Analysis of Dams, Brit. Nat. Committee on Large Dams, Swansea, Wales, 781-808.
[7]. Bear, J.(1979). “Hydraulics of Ground water”. McGraw- Hills, New York.
[8]. Beavers, G.S. and Joseph, D.D (1967). “Boundary condisions at naturally permeable walls”. J. Fluid Mech., Vol. 30, pp.197-207.
[9]. Beavers, G.S., Sparrow, E. M., and Maguson, R. A.(1970). “Experiments on coupled parallel flows in a channel and bounding porous medium”. ASME J. Basic Eng., Vol. 92, pp.843-848.
[10]. Berkowitz, B.(1989). “Boundary conditions along permeable fracture walls: influence on flow and conductivity”. Water Resour. Res., Vol. 25, pp.1919-1922.
[11]. Berman, A.S. (1953). “Laminar flow in channels with porous walls”. J. Appl. Phys., Vol. 24, pp.1232-1235.
[12]. Boussinesq J (1868). “Thesis about the influence of friction within the steady flow of fluids)”. J Math. Pures. App.l Vol. 13, pp.377–42
[13]. Bout, D.F., Grasselli, G., Fredrich, J.T., Cook, B. K. and Williams, J. R. (2006). “Trapping Zones: The effect of fracture roughness on directional anisotropy of fluid flow and colloid transport in a single fracture”. Geophys. Res. Let. Vol. 33, L21402
[14]. Box, G.P.E. and Jenekis, G.M.(1976). “Time series analysis forecasting and control”. Holden Day, San Fransisco.
[15]. Brooks, R. and Corey, A. T. (1964). “Hydraulic properties of porous media”. Hydrology Paper, Vol. 3, Colorado State University.
[16]. Brown, S.R. (1987). “Fluid flow through rock joints: the effect of surface roughness”. J. Geophys. Res. Vol.(92), pp.1337–1347.
[17]. Brown, S.R. (1995). “Simple mathematical model of a rough fracture”. J. Geophys. Res, Vol.(100), pp.5941-5952.
[18]. Brown, S. R., Stockman, H. W., and Reeves, S. J. (1995). “Applicability of Reynolds equation for modeling fluid flow between rough surfaces”. Geophys. Res. Lett., Vol.22, pp.2537-2540.
[19]. Brown,S.R. and Scholz, C.H. (1985). “Broad bandwidth study of the topography of natural science”. J.Geophys. Res, Vol.90, pp.12575-12582.
[20]. Brown,S.R., Kranz R. L.and Bonner B.P. (1986). “Correlation between the surfaces of natural rock joints”. J. Geophys. Res.Lett, Vol.13(13), pp.1430-1433.
[21]. Brush, D. J. and Thomson, N. R. (2003). “Fluid flow in synthetic rough walled fractures: Navier-Stokes, Stokes, and local cubic law simuations”. Water Resour. Res, Vol.39(4), pp.1085.
[22]. Chang, M.H., Chen, F. and Straughan, B. (2006). “Instability of Poiseuille flow in a fluid overlying a porous layer”. J. Fluid Mech., Vol. 564, pp.287-303.
[23]. Christian, K., Richard A., Schultz. A., Rishi P. and Donald M. R.(2010). “Cubic law with aperture-length correlation: implications for network scale fluid flow”. Hydrogeology Journal, Springer-Verlag,
[24]. Christianovich, S. A. and Zheltov, Y. P. (1955). “Formation of vertical fractures by means of highly viscous fluid”. Proc. 4th Petrol. Congress, 579-586.
[25]. Cleary, M. P. (1980). “Comprehensive design formulae for hydraulic fracturing”. Annual Tech. Conference and Exhib., Dallas, TX, USA.
[26]. Crandall, D.,Ahmadi, G. and Smith, G.S. (2010). “Computational modeling of fluid flow through a fracture in permeable rock”. Transp. Porous Media, Vol. 84, pp.493- 510.
[27]. Dagan,G. (1993). “Higher order correction for effective permeability of heterogeneous isotropic formations of lognormal conduntivity distribution”. Transp. Porous Media, Vol.12, pp.279-290.
[28]. Durham W. P., and Bonner, B.P.(1994). “Self propping and fluid flow in slightly offset joints at high effective pressures”. J. Geophys. Res, Vol.99, pp.9391-9399.
[29]. Elrod, H.G.(1979). “A general theory of laminar lubrication with Reynolds roughness”. J. Lubr. Tech, Vol. 101, pp. 8-14.
[30]. Fetter, C. W. (1999). “Contaminant Hydrogeology”, Prentice-Hall, Upper Saddle River, NJ, USA.
[31]. Fischer, U.B.,Kulli, B., and Fluhler,H. (1998). “Constitutive relationships and pore structure of undisturbed fracture zone samples with cohesionless fault gouge layers”. Water Resour. Res., Vol.34(7), pp.1695- 1701.
[32]. Fourar, M., and Bories, S. (1995). “Experimental study of air-water two phase flow through a fracture (narrow channel)”. Int. J. Multiphase Flow, Vol. 21, pp.621–637.
[33]. Fourar, M., Lenormand, R., and Persoff, P. (1993). ''Twophase flow in smooth and rough fractures: Measurement and correlation by porous medium and pipe flow models.'' Water Resour. Res., Vol. 29, pp.3699–3708.
[34]. Gang,i A.F. (1978). “Variation of whole and fractured porous rock permeability with confining pressure”. Int. J. Rock Min. Sci. Geomech.Abstr, Vol.15, pp.249–257.
[35]. Ge, S.(1997). “A governing equation for fluid flow in rough fractures”. Water resources Research, Vol. 33, pp. 53-61.
[36]. Hakami, E. and Larsson E.(1996). “Aperture measurements and flow experiments on single natural fracture”. Int. J. Rock Mech. Min. Sci. Geomech. Abs., Vol 33, pp.395-404.
[37]. Hasgawa, E. and Izuchi, H. (1983). “On the steady flow through a channel consisting of an uneven wall and plane wall”. Bull. Jap. Soc. Mech. Eng, Vol.26, pp.514-520.
[38]. Helmig, R.(1997). “Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems”. Springer-Verlag, Berlin, Heidelberg, New York.
[39]. Illangasekare, T., Amadei, B., and Chinnaswamy, C. (1992). “CRFLOOD: A numerical model to estimate uplift pressure distribution in cracks in concrete gravity dams”. Tech. Rep. TR-101671, Vol.4, EPRI, Prepared by university of Colorado, Boulder, Colo.
[40]. Indraratna, B., Ranjith, P.G, Price, J.R. and Gale, W. (2003). “Two-phase (air and water) flow through rock joints:analytical and experimental study”. J. Geotech. Geomech. Eng., ASCE, Vol.129(10), pp.918-928.
[41]. Ishii, M. (1975). “Thermo-fluid dynamic theory of twophase flow”, Electricite de France, Paris.
[42]. Iwai, K. (1976). “Fundamental studies of fluid flow through a single fracture”. Ph. D. Thesis, Univ. of Cali., Berkeley.
[43]. Javanmardi, F., Leger,P., and Tinawi, R.(2004). “Seismic water pressure in cracked concrete gravity dams: Experimental study and theoretical modeling”. J. Struc. Engg., ASCE, Vol.131(1), pp.139-150.
[44]. Javanmardi, F., Leger,P., and Tinawi, R. (2005). “Seismic structural stability of concrete gravity dams considering transient uplift pressures in cracks”. Engg.Struc., Elsevier, Vol.27, pp.616-628.
[45]. Jeffery, R. G., Settari, A. Mills, K. W., Zhang, X. and Detourmay, E. (2001). “Hydraulic fracturing to induce caving: Fracture model development and comparison to field data”. Proc., 38th US Rock Mechanics Symp., Balbema, Lisse, The Netherland, Vol. 1, pp.251-259.
[46]. Krantz, R.E., Franke, l A.D., Engelder, T., and Scholz, C.H. (1979). “The permeability of whole and jointed Barre granite”. Int. J. Rock Min. Sci. GeomechAbstr, Vol. 16, pp.225–234.
[47]. Kim, I., Lindquist, B. and Durham, W. (2003). “Frature flow simulation using a finite-difference lattice Boltzmann method”. Phys. Rev. E., Vol. 67, pp.046708.
[48]. Liu, E. (2005). “Effect of fracture aperture and roughness on hydraulic and mechanical properties of rocks : implication of seismic characterization of fractured reservoirs”. J. Geophys, Eng, Vol. 2, pp.38-47.
[49]. Liu, R., Liu,Q.S. and Zhao, S.C. (2006). “Instability of Poiseuille flow in a fluid- porous system”. Phys.Fluids, Vol. 20, pp.104105.
[50]. Logan, J. M., Rudnicki, J. W., Wawersik, W. R., and Wong, T. (2000). “Geomechanics perspective in terrestrial sequestration of CO2 : an assessment of research needs”. Adv. Geophys., Vol. 43, pp.97-117
[51]. Lomize, G.M. (1951). “Water flow in jointed rock”. Gosenergoizant, Moscow.
[52]. Louis, C. (1969). “A study of groundwater flow in jointed rock and its influence on stability of rock masses”. Rock Mechanics Research Report No. 10, Imperial College London, England.
[53]. Mandelbrot , B. B.(1982). “Self-affine fractals and fractal dimension”. Phys. Scr., Vol. 32, pp.257-260.
[54]. Mohais,R.,Xu,C. and Dowd, P.A. (2011). “Fluid flow and heat transfer within a single horizontal channel in an Enhanced Geothermal System”. J. Heat Transfer, Vol. 133, pp.1126031.
[55]. Mohais,R., Xu,C., Dowd, P.A., Hand, and Phillip, M. (2012). “Permeability correction factor for fracture with permeable walls”. Geophysical Research, Vol. 39(3), L03403.
[56]. Mourzenko, V. V., Thovert, J. F., and Adler, P. M. (1995). “Permeability of a single fracture-validity of Reynolds equation”. J. Phys. II, Vol. 5, pp.465-482.
[57]. Murdoch, L. C., and Slack, W. W. (2002). “Forms of hydraulic fractures in shallow fine grained formations”. J. Geotech. Geoenviron. Engg., Vol. 128(6), pp. 479-487.
[58]. Neale, G. and Nader, W. (1974). “Practical significance of Brinkman's extension of Darcy's law”. Can. J. Chem. Eng, Vol. 52, pp. 475-478.
[59]. Nichol, M. J., and Glass, R. J. (2001). “Simulation of immiscible viscous displacement within the plane of a horizontal fracture”. Rock mechanics in the national interest, Elsworth, Tinucci, and Heasley, eds., Swets and Zeitlinger Lisse, pp.205–210
[60]. Nicholl, C.E.,Rajaram,H.,Glass R.J. and Detwiler,R. (1999). “Saturated flow in single fracture: evaluation of Reynolds equation in measured aperture fields”. Wat. Res. Res., Vol. 35, pp.3361-3373.
[61]. Novakowski, K.S., Evans, G.V., Lever, D.A. and Raven, K.G. (1985). “A field example of measuring hydrodynamic dispersion in a single fracture”. Water Resour. Res, Vol. 21, pp.1165-1174.
[62]. Novakowski, K.S., Lapcevic, P.A., Voralec, J. and Bickerton, G. (1995). “Preliminary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow”. Geophys. Res. Lett., Vol. 22, pp. 1417-1420
[63]. Olson, J.E. (2003). “Sublinear scaling of fracture aperture versus length: an exception or the rule?”. J. Geophys. Res, Vol. 108(B9), pp.2413.
[64]. Oron, P. F. and Brian B. (1998). “Flow in rock fractures: the local cubic law reexamined”. Water Resources Research, Vol. 34, pp.2811-2825.
[65]. Patir, N. and Cheng, H.S. (1978). “An average flow model for determining the effects of three dimensional roughness on partial hydrodynamic lubrication”. J. Lubr. Tech., Vol.100, pp.12-17.
[66]. Peakau, O. A., and Zhu, X.(2008). “Effect of seismic uplift pressure on the behavior of concrete gravity dams with penetrated crack”. J. Engg. Mech., ASCE, Vol.134(11), pp.991-999.
[67]. Phillips, O. M. (1991). “Flow and reaction in permeable Rocks”. Cambridge University Press, Cambridge.
[68]. Poon, C. Y., Sayles, R.S. and Jones, T. A.(1992). “Surface measurements and surface characterization of naturally fractured rocks”. J. Phys. D, Vol.25, pp.1269-1275.
[69]. Power, W. L. and Tullis, T.E. (1991). “Euclidean and fractal models for the description of rock surface roughness”. J. Geophys.Res, Vol. 96, pp.415-424.
[70]. Pruess, K., and Tsang, Y. W. (1990). “On two-phase relative permeability and capillary pressure of roughwalled rock fractures”. Water Resour.Res., Vol. 26, pp.1915–1926.
[71]. Pyrak-Nolte, L. J., Cook, N. G.W. Nolte, D.D.and Witherspoon, P.A. (1987). “Hydraulic and mechanical properties of natural fractures in low permeable rocks”. Proc.6th Int. Congress Rock. Mech., pp.225-231.
[72]. Quin, J., Zhan, H., Zhao, W. and Suan, F. (2005). “Experimental study of turbulent unconfined groundwater flow in a single fracture”. J, Hydrol, Vol.311, pp.134-142.
[73]. Quin, J., Zhan, H.,and Zhao, W. F. (2007). “Experimental evidence of scale-dependen hydraulic conductivity for fully developed turbulent flow in a single fracture”. J.Hydrol., Vol. 311(3-4), pp.206-215.
[74]. Quin, J., Chen, Z. Zhan, H.,and Guan, H. (2010). “Experimental study of the effect of roughness and Reynold number on fluid flow in rough-walled single fracture: A check of local cubic law”. Hydrol.Process, (24).
[75]. Quin, J., Zhan H., Chen, Z. ,and Ye, H. (2011). “Experimental study of solute transport under non-Darcian flow in single fracture”. J. Hydrol., Vol. 399, pp.246-254.
[76]. Rasmuson, A. and Neretnieks, I. (1986). “Radionuclide transport in fast channels in crystalline rock”. Water Resour. Res., Vol. 22, pp.1247-1256.
[77]. Rasmussen, T. C. (1991). “Steady fluid flow and travel times in partially saturated fractures using discrete air–water interfaces”. Water Resour. Res., Vol. 27, pp.67–76.
[78]. Raven , K. G. and Gale, J.E.(1985). “Water flow in natural rock fracture as a function of stress and sample size”. Int. J. Rock Mech.Min. Sci. Geomech. Abstr., Vol. 22(4), pp.251-261.
[79]. Raven, K.G., Novakowski, K.S. and Lapcevic, P.A. (1988). “Interpretation of field tracer tests of a single fracture using a transient solute storage model”. Water Resour. Res., Vol. (24), pp.2019-2032.
[80]. Reichenberger, V., Jakobs, H.,Bastian, P. and Helmig, R.(2005). “A mixed dimensional finite volume method for two-phase flow in fractured porous media”. Elsevier Science.
[81]. Renshaw, C.E.(1995). “On relationship between mechanical and hydraulic apertures in rough walled fractures”. J. Geophys. Res, Vol.100, pp.24629-24636.
[82]. Sahraoui, M. and Kaviany, M. (1992). “Slip and no-slip velocity boundary condiions at interface of porous, plain media”. Int. J. Heat Mass Transfer, Vol.35, pp.927-943.
[83]. Saouma, V., Broj, J., Bruhwiler, E., and Boggs, H. (1991). “Effect of aggregate and specimen size on fracture properties of dam concrete”. J. Mat. In Civil Engg., ASCE Vol.3(3), pp.204-218.
[84]. Sarris, E. and Papanastasiou, P. (2012). “Modeling of hydraulic fracturing in a poroelastic cohesive formation”. Int. J. Geomech., ASCE, Vol.12(2).
[85]. Sausse, J, and Genter, A. (2005). “Types of permeable fractures in granite, in Ptrophysical Properties of Crystalline Rocks”, edited by P. K. Harvey, Geol. Soc. Spec. Publ.
[86]. Schmittbuhl, J. F.,Schmitt, F. and Scholz, C. H. (1995). “Scaling ivariance of crack surfaces”. J. Geophys.Res., Vol.100, pp.5953-5973.
[87]. Schultz, R.A., Soliva, R., Fossen, H., Okubo, C.H., Reeves, D.M. (2008). “Dependence of displacementlength scaling relations for fractures and deformation bands on the volumetric changes across them”. J. Struct. Geol, Vol. 30, pp.1405–1411
[88]. Sharp, J.C., and Maini, Y.N.T. (1972). “Fundamental considerations on hydraulic characteristics of joints in rock”. Proc. Symp. On Percolation through Fissured Rock, International Society for Rock Mechanics, Stuttgart, n. T1-F.
[89]. Sisavath, S. A., Al-Yarubi, A., Pain, C,C. and Zimmermann, R.W. (2003). “A simple model for deviations from the cubic law for fracture undergoing dilation or closure”. Pure Appl. Geophys, Vol.106, pp.1009-1022.
[90]. Slowik, V., and Saouma, V. E. (2000). “Water pressure in propagating concrete cracks”. J. Struc. Engg., ASCE, Vol.126(2), pp.235-142.
[91]. Skjetne, I.N., Hansen, A. and Gudmundsson, J.S. (1999). “High velocity flow in rough fracture”. J. Fluid Mech. Vol. 383, pp.1-28.
[92]. Soliman, M. Y., East, L. and Adams, D. (2004). “Geomechanics aspects of multiple fracturing of horizontal and vertical wells”. Int. Therm. Operations and Heavy Oil Symp.And Western Regional Meeting, CA, USA.
[93]. Sung-Hoon,J., Yeo, I. W., and Lee, K. (2003). “Influence of ambient ground water flow on DNAPL migration in a fractured network”. Geoph.Res. Lett., Vol.30 (10).
[94]. Terzhagi, K. (1936). “Simple tests to determine hydrostatic uplift”, Engg. News Rec., June 18,872
[95]. Thompson, M. and Brown, S.(1991). “The effect of anisotropic surface roughness on flow and transport in fractures”. J. Geophys. Res, Vol.(96), pp.21923-21932.
[96]. Tilton, N. and Cortelezze (2006). “The destabilizing effects of wall permeability in channel fkow: a linear stability analysis”. Phys. Fluids, Vol.(18), pp.051702.
[97]. Tsang, Y. W., and Tsang, C. F. (1987). “Channel model of flow through fractured media”. Water Resour. Res., Vol.23(3), pp.467-479.
[98]. Tsang, Y.W., and Witherspoon, P.A. (1981). “Hydromechanical behavior of a deformable rock fracture subject to normal stress”. J. Geophys. Res, Vol.(86), pp.9287–9298.
[99]. Tsang, Y.W., and Witherspoon, P. A. (1983). ''The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size.'' J. Geophys. Res., Vol.(88), pp.2359–2366.
[100]. Vermilye, J.M. and Scholz, C.H. (1995). “Relation between vein length and aperture”. J. Struct. Geol, Vol.(17), pp.423–434.
[101]. Waite,M., Ge, S and Spetzler, H.(1999). “A new conceptual model for flow in discrete fractures: an experimental and numerical studies”. J. Geophy. Res., Vol.104,pp.13049-13059.
[102]. Wen, Z., Huang, G., and Zhan, Z. (2006). “Non- Darcian flow in a single confined vertical fracture toward a well”, J. Hydrol., Vol.330 (3-4), pp.698-708.
[103]. White, F.M.(1994). “Fluid Mechanics”, McGraw Hills Publ.
[104]. Witherspoon, P.A., Wang, J.S.Y., Iwai, K.,and Gale, J.E. (1980). “Validity of cubic law for fluid flow in a deformable rock fracture”. Water Resou.r Res, Vol.16, pp.1016– 1024.
[105]. Wittke, W. (1990). “Rock mechanics theory and applications with case studies”. Berlin (Germany), Springer –Verlag.
[106]. Yeo,I., de Freitas, M.H.and Zimmerman, R.W. (1998). “Effect of shear displacement on the aperture and permeability of rock fracture”. Int. J. Rock Mech. And Min. Scien., Vol.28, pp.325-331.
[107]. Yeo, W. and Ge, S.(2005). “Applicable range of Reynolds equation for fluid flow in a rock fracture”. Geosc.J. Vol.9, pp.347-352.
[108]. Zhan, H. (1998). “Transport of waste leakages in stratified formation”. Adv. Water Resour., Vol.22(2), pp.159- 168.
[109]. Zimmerman, R. W., and Bodvarsson, G.S. (1996). “Hydraulic conductivity of rock fractures”. Transp. Porous Media, Vol.23, pp.1-30.
[110]. Zimmerman, R. W., Chen, G.S.and Cook, N. G. W. (1992). “The effect of contact area on permeability of fractures”. J.Hydrol. Vol.139, pp.79-96.
[111]. Zimmerman, R. W., Kumar, S. and Bodvarsson, G.S. (1991). “Lubrication theory analysis of the permeability of rough-walled fractures”. Int. J. Rock Mech, Vol. 28 pp.325- 331.
[112]. Zimmerman, R. W., and Main I.G.(2004). “Hydromechabical behavior of fractured rocks-Mechanics of Fluid-Saturated Rocks”. Ed. Y Gueguen and M. Bouteca, Elsevier, London.
[113]. Zimmerman, R.W. and Yeo, I.W. (2000). “Fluid flow in rock fractures: from the Navier-Stokes equations to the cubic law”. In B.Fabishenko, P.A. Witherspoon and S.M. Benson, ed. Dynamics of Fluids in Fractured Rocks, American Geoph. Union, Washington.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.