Comparison Of Composite Proton Conducting Polymer Gel Electrolytes Containing Weak Aromatic Acids

Rajiv Kumar*
*Department of Physics, Goswami Ganesh Dutt Sanatan Dharam College, Hariana, Hoshiarpur, Punjab, India.
Periodicity:July - September'2014
DOI : https://doi.org/10.26634/jms.2.2.2818

Abstract

Composite proton conducting non aqueous polymer gel electrolytes have been synthesized by dispersing nano sized fumed silica to the polymer gel electrolytes containing polymethylmethacrylate (PMMA), dimethylacetamide (DMA), benzoic acid (BA) and ortho-hydroxy benzoic acid (o-OHBA). These electrolytes have been characterized by complex impedance spectroscopy, viscosity and pH measurements. The effect of acid, polymer and fumed silica on conductivity, pH and viscosity has been studied for gel electrolytes. Maximum conductivity of 2.95 x 10-4 S/cm and viscosity of 1.64 x 105 mPas at 25o C has been obtained. The conductivity of composite gels does not show any appreciable change with time and only a small change in conductivity is observed over the operational range of temperature, which is desirable for their use in device applications.

Keywords

Conductivity, Dimethylacetamide, Fumed Silica, Polymethylmethacrylate, Viscosity

How to Cite this Article?

Kumar, R. (2014). Comparison of composite proton conducting polymer gel electrolytes containing weak aromatic acids. i-manager's Journal on Material Science, 2(2), 23-34. https://doi.org/10.26634/jms.2.2.2818

References

[1]. L. Carrette, K. A. Friedrich, U. Stimming, (2001). “Fuel Cells – Fundamentals and Applications” Fuel Cells, Vol. 1, pp. 5-39,
[2]. J. C. Lassagues, (1992). in: P. Colomban (Ed.), Proton Conductors: solids, membranes and gel-materials and devices, Cambridge University Press, Cambridge, Ch. 20,
[3]. H. P. Dhar, (1993). “On solid polymer fuel cells” J. Electroanal. Chem,. Vol. 357, pp. 237-250,
[4]. O. Savadogo, (1998). “Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems” J. New Mater. Electrochem. Syst.., Vol. 1 pp. 47-66,
[5]. P. Costamagna, S. Srinivasan, (2001). “Quantum jumps in the PEMFC Science and technology from the 1960s to the year 2000: Part 1. Fundamentals Scientific aspects” J. Power Sources, vol. 102, pp. 242-252,
[6]. K. D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, (1998). “Imidazole and pyrazole-based proton conducting polymers and liquids” J. Maier, Electrochim. Acta, vol. 43, pp. 1281-1288,
[7]. J. S. Wainright, J. Wang, D. Weng, R. F. Savinell, M. Litt., (1995). “Acid-doped polybenzimidazoles: A new polymer electrolyte” J. Electrochem. Soc., Vol. 142, pp. L121-L123,
[8]. A. M. Grillone, S. Panero, B. A. Retamal, B. Scrosati, (1999). “Proton polymeric gel electrolyte membranes based on polymethylmethacrylate” J. Electrochem. Soc,. Vol. 146, pp. 27-31,
[9]. S. Chandra, S. S. Sekhon, N. Arora, (2000). “PMMA based protonic polymer gel electrolytes” Ionics, Vol. 6, pp. 112-118,
[10]. W. Wieczorek, G. Zukowska, R. Borkowska, S. H. Chung, S. Greenbaum, (2001). “A basic investigation of anhydrous proton conducting gel electrolytes” Electrochim. Acta, Vol. 46 pp. 1427-1438,
[11]. A. Webber, (1991). “Conductivity and viscosity of solutions of LiCF3SO3, Li(CF3SO2)2N, and their mixtures” J. Electrochem. Soc., Vol. 138, pp. 2586-2590,
[12]. R. Kumar, S. S. Sekhon, (2008). “Effect of molecular weight of PMMA on the conductivity and viscosity behavior of polymer gel electrolytes containing NH4CF3SO3”, Ionics, Vol. 14, pp. 509-514,
[13]. O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, C. Truche, (1993). “Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration” Solid State Ionics Vol. 66, pp. 97-104,
[14]. R. Kumar, S. S. Sekhon, (2013). "Conductivity, FTIR studies and thermal behavior of PMMA-based proton
[15]. C. C. Liang, (1973). “Conduction characteristics of the lithium iodide - aluminum oxide solid electrolytes” J. Electrochem. Soc., Vol. 120, pp. 1289-1292,
[16]. C. W. Nan, (1987). “Conduction theory of ionic conductor containing dispersed second phase” Acta Phys. Sin., Vol. 36, pp. 191-198,
[17]. W. Wieczorek, Z. Elorjanczyk, J. R. Stevens, (1995). “Proton conducting polymer gels based on a polyacrylamide matrix” Electrochim. Acta, Vol. 40, pp. 2327-2330,
[18]. F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, “Nanocomposite polymer electrolytes for lithium batteries” Nature Vol. 394, pp. 456-458,
[19]. G. B. Appetecchi, P. Romagnoli, B. Scrosati, (2001). “Composite gel membranes: A new class of improved polymer electrolytes for lithium batteries” Electrochem. Commu. Vol. 3, pp. 281-284,
[20]. H. J. Walls, J. Zhou, J. A. Yerian, P.S. Fedkiw, S.S. Khan, M.K. Stove, G.L. Baker, (2000). “Fumed silica-based composite polymer electrolytes: Synthesis, rheology, and electrochemistry” J. Power Sources Vol. 89, pp. 156-162,
[21]. J. E. Weston, B. C. H. Steele, (1982). “Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes” Solid State Ionics, Vol. 7, pp. 75-79,
[22]. W. Wieczorek, K. Such, H. Wycislik, J. Plocharski, (1989). “Modifications of crystalline structure of PEO polymer electrolytes with ceramic additives” Solid State Ionics Vol. 36, pp. 255-257,
[23]. B. Scrosati, F. Croce, L. Persi, (2000). “Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes” J. Electrochem. Soc., Vol. 5 pp. 1718- 1721,
[24]. L. Z. Fan, C. W. Nan, M. Li, (2003). “Effect of modified SiO2 on the properties of PEO-based polymer electrolytes” Solid State Ionics Vol. 164, pp. 81-86,
[25]. D. Kumar, S. A. Hashmi, (2010). “Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)- based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles”, J. Power Sources, Vol. 195, pp. 5101–5108,
[26]. P. Zhang, L C. Yang, L. L. Li, M. L. Ding, Y. P. Wu, R. Holze, (2011). “Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires”, J. Membrane Sci., Vol. 379, pp. 80-85,
[27]. A. Chandra, P. C. Srivastava, S. Chandra, (1992). Solid State Ionics: Materials and Applications, (Eds. B. V. R. Chowdari, S. Chandra, Shri Singh, P. C. Srivastava), World Scientific, Singapore, p. 397,
[28]. C. Capiglia, P. Mustarelli, E. Quartarone, C. Tomasi, A. Magistris, (1999). “Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes” Solid State Ionics Vol. 118 pp. 73-79,
[29]. V. G. Ponomareva, G.V. Lavrova, L.G. Simonova,(1999). “Effect of SiO2 morphology and pores size on the proton nanocomposite electrolytes properties” Solid State Ionics, Vol. 119, pp. 295-299,
[30]. M. A. K. L. Dissanayake, P. A. R. D. Jayathilaka, B. S. P. Bokalawala, I. Albinsson, B. E. Mellander, (2003). “Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF SO :Al O 3 3 2 3 composite polymer electrolyte” J. Power Sources, Vol. 119- 121, pp. 409-414,
[31]. R. Kumar, S. S. Sekhon, (2009). “Conductivity modification of proton conducting polymer gel electrolytes containing a weak acid (ortho-hydroxy benzoic acid) with the addition of PMMA and fumed silica” J. Appl. Electrochem., Vol. 39, pp. 439-445,
[32]. R. Kumar, “Nano-composite polymer gel electrolytes containing ortho-nitro benzoic acid: Role of dielectric constant of solvent and fumed silica” Ind. J. Phys., Unpublished.

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.